5. Krafter och jämvikt

Förberedande Mekanik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(New page: 5. Forces and Equilibrium Key Points If the resultant of the forces acting on a particle is zero we say that these forces are in equilibrium. Example 5.1 The diagram shows an object, ...)
Nuvarande version (1 mars 2010 kl. 13.59) (redigera) (ogör)
 
(24 mellanliggande versioner visas inte.)
Rad 1: Rad 1:
-
5. Forces and Equilibrium
+
__NOTOC__
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" |  
 +
{{Selected tab|[[5. Forces and equilibrium|Theory]]}}
 +
{{Not selected tab|[[5. Exercises|Exercises]]}}
 +
| style="border-bottom:1px solid #797979" width="100%"|  
 +
|}
-
Key Points
+
 
 +
== '''Key Points''' ==
If the resultant of the forces acting on a particle is zero we say that these forces are in equilibrium.
If the resultant of the forces acting on a particle is zero we say that these forces are in equilibrium.
-
Example 5.1
+
'''[[Example 5.1]]'''
The diagram shows an object, of mass 300 kg, that is at rest and is supported by two cables. Find the tension in each cable.
The diagram shows an object, of mass 300 kg, that is at rest and is supported by two cables. Find the tension in each cable.
 +
[[Image:TF5.1.GIF]]
-
 
+
'''Solution'''
-
Solution
+
The diagram shows the forces
The diagram shows the forces
acting on the object.
acting on the object.
- 
- 
- 
- 
- 
- 
Resolving horizontally or using the horizontal components of the forces:
Resolving horizontally or using the horizontal components of the forces:
-
 
<math>\begin{align}
<math>\begin{align}
& {{T}_{1}}\cos 60{}^\circ ={{T}_{2}}\cos 60{}^\circ \\ & {{T}_{1}}={{T}_{2}}
& {{T}_{1}}\cos 60{}^\circ ={{T}_{2}}\cos 60{}^\circ \\ & {{T}_{1}}={{T}_{2}}
\end{align}</math>
\end{align}</math>
- 
Resolving vertically gives;
Resolving vertically gives;
-
+
<math>{{T}_{1}}\sin 60{}^\circ +{{T}_{2}}\sin 60{}^\circ =2940 \ \text{N}</math>
-
<math>{{T}_{1}}\sin 60{}^\circ +{{T}_{2}}\sin 60{}^\circ =2940</math>
+
-
 
+
Now solving the equations by substituting
Now solving the equations by substituting
<math>{{T}_{1}}={{T}_{2}}</math>
<math>{{T}_{1}}={{T}_{2}}</math>
 +
gives:
gives:
-
 
<math>\begin{align}
<math>\begin{align}
& {{T}_{1}}\sin 60{}^\circ +{{T}_{2}}\sin 60{}^\circ =2940 \\
& {{T}_{1}}\sin 60{}^\circ +{{T}_{2}}\sin 60{}^\circ =2940 \\
Rad 48: Rad 45:
\end{align}</math>
\end{align}</math>
 +
And also
 +
<math>{{T}_{2}}=1700\text{ N (to 3 sf)}</math>.
-
And also
+
 
-
<math>{{T}_{2}}=1700\text{ N (to 3 sf)}</math>
+
'''[[Example 5.2]]'''
-
.
+
 
-
Example 5.2
+
[[Image:ex5.2fig1a.gif]]
A particle of mass 6 kg is suspended by two
A particle of mass 6 kg is suspended by two
Rad 58: Rad 57:
string is horizontal. Find the tension in each string.
string is horizontal. Find the tension in each string.
-
Solution
+
'''Solution'''
 +
 
 +
[[Image:ex5.2fig2.gif]]
The diagram shows the forces acting
The diagram shows the forces acting
Rad 65: Rad 66:
Resolving vertically:
Resolving vertically:
-
 
<math>\begin{align}
<math>\begin{align}
-
& {{T}_{1}}\sin 60{}^\circ =58.8 \\
+
& {{T}_{1}}\sin 60{}^\circ =58\textrm{.}8 \ \text{N}\\
-
& {{T}_{1}}=\frac{58.8}{\sin 60{}^\circ }=67.9\text{ N (to 3 sf)} \\
+
& {{T}_{1}}=\frac{58\textrm{.}8}{\sin 60{}^\circ }=67\textrm{.}9\text{ N (to 3 sf)} \\
\end{align}</math>
\end{align}</math>
- 
Resolving horizontally:
Resolving horizontally:
-
 
<math>\begin{align}
<math>\begin{align}
& {{T}_{1}}\cos 60{}^\circ ={{T}_{2}} \\
& {{T}_{1}}\cos 60{}^\circ ={{T}_{2}} \\
-
& {{T}_{2}}=\frac{58.8}{\sin 60{}^\circ }\cos 60{}^\circ =33.9\text{ N (to 3sf)} \\
+
& {{T}_{2}}=\frac{58\textrm{.}8}{\sin 60{}^\circ }\cos 60{}^\circ =33\textrm{.}9\text{ N (to 3sf)} \\
\end{align}</math>
\end{align}</math>
-
Example 5.3
+
'''[[Example 5.3]]'''
-
A lorry of mass 5000 kg drives up a slope inclined at 5 to the horizontal. The lorry moves in a straight line and at a constant speed. Assume that no resistance forces act on the lorry. Find the magnitude of the normal reaction force and force that acts on the lorry in its direction of motion.
+
A lorry of mass 5000 kg drives up a slope inclined at <math>{{5}^{\circ }}</math> to the horizontal. The lorry moves in a straight line and at a constant speed. Assume that no resistance forces act on the lorry. Find the magnitude of the normal reaction force and force that acts on the lorry in its direction of motion.
-
Solution
+
'''Solution'''
 +
 
 +
[[Image:ex5.3fig1.gif]]
Model the lorry as a particle.
Model the lorry as a particle.
Rad 94: Rad 94:
Resolving perpendicular to the slope gives:
Resolving perpendicular to the slope gives:
-
 
<math>R=49000\cos 5{}^\circ =48800\text{ N (to 3 sf)}</math>
<math>R=49000\cos 5{}^\circ =48800\text{ N (to 3 sf)}</math>
- 
Resolving parallel to the slope gives:
Resolving parallel to the slope gives:
-
 
<math>P=49000\sin 5{}^\circ =4270\text{ N (to 3sf)}</math>
<math>P=49000\sin 5{}^\circ =4270\text{ N (to 3sf)}</math>
-
Example 5.4
+
'''[[Example 5.4]]'''
-
A child, of mass 30kg, slides down a slide at a constant speed. Assume that there is no air resistance acting on the child. The slide makes an angle of 40 with the horizontal. Find the magnitude of the friction force on the child and the coefficient of friction.
+
A child, of mass 30 kg, slides down a slide at a constant speed. Assume that there is no air resistance acting on the child. The slide makes an angle of <math>{{40}^{\circ }}</math> with the horizontal. Find the magnitude of the friction force on the child and the coefficient of friction.
-
Solution
+
'''Solution'''
Model the child as a particle.
Model the child as a particle.
 +
 +
[[Image:ex5.4fig1.gif]]
The diagram shows the forces
The diagram shows the forces
Rad 117: Rad 116:
Resolving parallel to the slope gives.
Resolving parallel to the slope gives.
-
 
<math>F=294\sin 40{}^\circ =189\text{ N (to 3sf)}</math>
<math>F=294\sin 40{}^\circ =189\text{ N (to 3sf)}</math>
- 
Resolving perpendicular to the slope gives:
Resolving perpendicular to the slope gives:
-
+
<math>R=294\cos 40{}^\circ \ \text{N}</math>
-
<math>R=294\cos 40{}^\circ </math>
+
-
 
+
As the child is sliding
As the child is sliding
<math>F=\mu R</math>
<math>F=\mu R</math>
-
so that we can determine .
+
so that we can determine <math>\mu </math>.
-
 
<math>\begin{align}
<math>\begin{align}
& 294\sin 40{}^\circ =\mu \times 294\cos 40{}^\circ \\
& 294\sin 40{}^\circ =\mu \times 294\cos 40{}^\circ \\
-
& \mu =\frac{294\sin 40{}^\circ }{294\cos 40{}^\circ }=\tan 40{}^\circ =0.840\text{ (to 3 sf)} \\
+
& \mu =\frac{294\sin 40{}^\circ }{294\cos 40{}^\circ }=\tan 40{}^\circ =0\textrm{.}840\text{ (to 3 sf)} \\
\end{align}</math>
\end{align}</math>
 +
'''[[Note – Angle of Friction]]'''
-
Note – Angle of Friction
+
[[Image:AngleFriction.gif]]
-
 
+
-
If a particle of mass m is at rest on a slope
+
-
at an angle  above the horizontal, then :
+
 +
If a particle of mass <math>m</math> is at rest on a slope
 +
at an angle <math>\alpha </math> above the horizontal, then :
<math>F=mg\sin \alpha </math>
<math>F=mg\sin \alpha </math>
- 
-
 
<math>R=mg\cos \alpha </math>
<math>R=mg\cos \alpha </math>
- 
Then using
Then using
Rad 157: Rad 148:
gives:
gives:
-
 
<math>\begin{align}
<math>\begin{align}
& mg\sin \alpha \le \mu mg\cos \alpha \\
& mg\sin \alpha \le \mu mg\cos \alpha \\
Rad 165: Rad 155:
 +
'''[[Example 5.5]]'''
-
Example 5.5
+
[[Image:ex5.5fig1.gif]]
A crate of mass 200 kg is on a horizontal surface. The coefficient of friction between the crate and the surface is 0.4. The crate is pulled by a rope, as shown in the diagram, so that the crate moves at a constant speed in a straight line. Find the tension in the rope.
A crate of mass 200 kg is on a horizontal surface. The coefficient of friction between the crate and the surface is 0.4. The crate is pulled by a rope, as shown in the diagram, so that the crate moves at a constant speed in a straight line. Find the tension in the rope.
 +
'''Solution'''
-
Solution
+
[[Image:ex5.5fig2.gif]]
The diagram shows the forces
The diagram shows the forces
Rad 177: Rad 169:
Resolving horizontally:
Resolving horizontally:
-
 
+
-
+
<math>F=T\cos 20{}^\circ \ \text{N}</math>
-
<math>F=T\cos 20{}^\circ </math>
+
-
 
+
Resolving vertically:
Resolving vertically:
-
 
+
-
+
<math>R+T\sin 20{}^\circ =1960</math>
<math>R+T\sin 20{}^\circ =1960</math>
or
or
-
+
-
<math>R=1960-T\sin 20{}^\circ </math>
+
<math>R=1960-T\sin 20{}^\circ \ \text{N}</math>
-
 
+
As the crate is sliding we can use
As the crate is sliding we can use
<math>F=\mu R</math>, which gives:
<math>F=\mu R</math>, which gives:
-
+
<math>F=0\textrm{.}4R</math>
-
<math>F=0.4R</math>
+
-
 
+
Using this equation with the horizontal and vertical equations gives:
Using this equation with the horizontal and vertical equations gives:
-
 
<math>\begin{align}
<math>\begin{align}
-
& T\cos 20{}^\circ =0.4\left( 1960-T\sin 20{}^\circ \right) \\
+
& T\cos 20{}^\circ =0\textrm{.}4\left( 1960-T\sin 20{}^\circ \right) \\
-
& T\cos 20{}^\circ =784-T\times 0.4\sin 20{}^\circ \\
+
& T\cos 20{}^\circ =784-T\times 0\textrm{.}4\sin 20{}^\circ \\
-
& T\cos 20{}^\circ +T\times 0.4\sin 20{}^\circ =784 \\
+
& T\cos 20{}^\circ +T\times 0\textrm{.}4\sin 20{}^\circ =784 \\
-
& T\left( \cos 20{}^\circ +0.4\sin 20{}^\circ \right)=784 \\
+
& T\left( \cos 20{}^\circ +0\textrm{.}4\sin 20{}^\circ \right)=784 \\
-
& T=\frac{784}{\cos 20{}^\circ +0.4\sin 20{}^\circ }=728\text{ N (to 3sf)} \\
+
& T=\frac{784}{\cos 20{}^\circ +0\textrm{.}4\sin 20{}^\circ }=728\text{ N (to 3sf)} \\
\end{align}</math>
\end{align}</math>

Nuvarande version

       Theory          Exercises      


Key Points

If the resultant of the forces acting on a particle is zero we say that these forces are in equilibrium.


Example 5.1

The diagram shows an object, of mass 300 kg, that is at rest and is supported by two cables. Find the tension in each cable.

Image:TF5.1.GIF

Solution

The diagram shows the forces acting on the object.

Resolving horizontally or using the horizontal components of the forces:

\displaystyle \begin{align} & {{T}_{1}}\cos 60{}^\circ ={{T}_{2}}\cos 60{}^\circ \\ & {{T}_{1}}={{T}_{2}} \end{align}

Resolving vertically gives;

\displaystyle {{T}_{1}}\sin 60{}^\circ +{{T}_{2}}\sin 60{}^\circ =2940 \ \text{N}

Now solving the equations by substituting \displaystyle {{T}_{1}}={{T}_{2}}

gives:

\displaystyle \begin{align} & {{T}_{1}}\sin 60{}^\circ +{{T}_{2}}\sin 60{}^\circ =2940 \\ & 2{{T}_{1}}\sin 60{}^\circ =2940 \\ & {{T}_{1}}=\frac{2940}{2\sin 60{}^\circ }=1700\text{ N (to 3sf)} \\ \end{align}

And also \displaystyle {{T}_{2}}=1700\text{ N (to 3 sf)}.


Example 5.2

Image:ex5.2fig1a.gif

A particle of mass 6 kg is suspended by two strings as shown in the diagram. Note that one string is horizontal. Find the tension in each string.

Solution

Image:ex5.2fig2.gif

The diagram shows the forces acting on the particle.

Resolving vertically:

\displaystyle \begin{align} & {{T}_{1}}\sin 60{}^\circ =58\textrm{.}8 \ \text{N}\\ & {{T}_{1}}=\frac{58\textrm{.}8}{\sin 60{}^\circ }=67\textrm{.}9\text{ N (to 3 sf)} \\ \end{align}

Resolving horizontally:

\displaystyle \begin{align} & {{T}_{1}}\cos 60{}^\circ ={{T}_{2}} \\ & {{T}_{2}}=\frac{58\textrm{.}8}{\sin 60{}^\circ }\cos 60{}^\circ =33\textrm{.}9\text{ N (to 3sf)} \\ \end{align}


Example 5.3

A lorry of mass 5000 kg drives up a slope inclined at \displaystyle {{5}^{\circ }} to the horizontal. The lorry moves in a straight line and at a constant speed. Assume that no resistance forces act on the lorry. Find the magnitude of the normal reaction force and force that acts on the lorry in its direction of motion.

Solution

Image:ex5.3fig1.gif

Model the lorry as a particle.

The diagram shows the forces acting on the lorry.

Resolving perpendicular to the slope gives:

\displaystyle R=49000\cos 5{}^\circ =48800\text{ N (to 3 sf)}

Resolving parallel to the slope gives:

\displaystyle P=49000\sin 5{}^\circ =4270\text{ N (to 3sf)}


Example 5.4

A child, of mass 30 kg, slides down a slide at a constant speed. Assume that there is no air resistance acting on the child. The slide makes an angle of \displaystyle {{40}^{\circ }} with the horizontal. Find the magnitude of the friction force on the child and the coefficient of friction.

Solution

Model the child as a particle.

Image:ex5.4fig1.gif

The diagram shows the forces acting on the child.

Resolving parallel to the slope gives.

\displaystyle F=294\sin 40{}^\circ =189\text{ N (to 3sf)}

Resolving perpendicular to the slope gives:

\displaystyle R=294\cos 40{}^\circ \ \text{N}

As the child is sliding \displaystyle F=\mu R so that we can determine \displaystyle \mu .

\displaystyle \begin{align} & 294\sin 40{}^\circ =\mu \times 294\cos 40{}^\circ \\ & \mu =\frac{294\sin 40{}^\circ }{294\cos 40{}^\circ }=\tan 40{}^\circ =0\textrm{.}840\text{ (to 3 sf)} \\ \end{align}


Note – Angle of Friction

Image:AngleFriction.gif

If a particle of mass \displaystyle m is at rest on a slope at an angle \displaystyle \alpha above the horizontal, then :

\displaystyle F=mg\sin \alpha

\displaystyle R=mg\cos \alpha

Then using \displaystyle F\le \mu R gives:

\displaystyle \begin{align} & mg\sin \alpha \le \mu mg\cos \alpha \\ & \mu \ge \frac{\sin \alpha }{\cos \alpha } \\ & \mu \ge \tan \alpha \\ \end{align}


Example 5.5

Image:ex5.5fig1.gif

A crate of mass 200 kg is on a horizontal surface. The coefficient of friction between the crate and the surface is 0.4. The crate is pulled by a rope, as shown in the diagram, so that the crate moves at a constant speed in a straight line. Find the tension in the rope.

Solution

Image:ex5.5fig2.gif

The diagram shows the forces acting on the crate.

Resolving horizontally:

\displaystyle F=T\cos 20{}^\circ \ \text{N}

Resolving vertically:

\displaystyle R+T\sin 20{}^\circ =1960

or

\displaystyle R=1960-T\sin 20{}^\circ \ \text{N}

As the crate is sliding we can use \displaystyle F=\mu R, which gives:

\displaystyle F=0\textrm{.}4R

Using this equation with the horizontal and vertical equations gives:

\displaystyle \begin{align} & T\cos 20{}^\circ =0\textrm{.}4\left( 1960-T\sin 20{}^\circ \right) \\ & T\cos 20{}^\circ =784-T\times 0\textrm{.}4\sin 20{}^\circ \\ & T\cos 20{}^\circ +T\times 0\textrm{.}4\sin 20{}^\circ =784 \\ & T\left( \cos 20{}^\circ +0\textrm{.}4\sin 20{}^\circ \right)=784 \\ & T=\frac{784}{\cos 20{}^\circ +0\textrm{.}4\sin 20{}^\circ }=728\text{ N (to 3sf)} \\ \end{align}