13. Moment
Förberedande Mekanik
(Skillnad mellan versioner)
(New page: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #797979" width="5px" | {{Selected tab|Theory}} {{No...) |
m (flyttade 13. Moments till 13. Moment) |
||
(8 mellanliggande versioner visas inte.) | |||
Rad 5: | Rad 5: | ||
{{Not selected tab|[[13. Exercises|Exercises]]}} | {{Not selected tab|[[13. Exercises|Exercises]]}} | ||
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | == '''Key Points''' == | ||
+ | |||
+ | The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O. | ||
+ | |||
+ | [[Image:T13.1.GIF]] | ||
+ | |||
+ | <math>\text{Moment }=Fd</math> | ||
+ | |||
+ | [[Image:T13.2.GIF]] | ||
+ | |||
+ | <math>\text{Moment }=Fd\sin \theta </math> | ||
+ | |||
+ | Clockwise moments are negative. | ||
+ | |||
+ | Anti-clockwise moments are positive. | ||
+ | |||
+ | |||
+ | |||
+ | '''[[Example 13.1]]''' | ||
+ | |||
+ | [[Image:ex13.1whole.GIF]] | ||
+ | |||
+ | |||
+ | '''[[Example 13.2]]''' | ||
+ | |||
+ | [[Image:ex13.2.GIF]] | ||
+ | |||
+ | |||
+ | '''[[Example 13.3]]''' | ||
+ | |||
+ | For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O. | ||
+ | |||
+ | [[Image:ex13.3.GIF]] | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | {| width="100%" cellspacing="10px" align="center" | ||
+ | |align="left"| Force | ||
+ | | valign="top"|Moment (Nm) | ||
+ | |- | ||
+ | |5N at O | ||
+ | | valign="top"| <math>5\times 0=0</math> | ||
+ | |- | ||
+ | |8 N | ||
+ | |valign="top"| <math>-8\times 1\textrm{.}2=-9\textrm{.}6</math> | ||
+ | |- | ||
+ | |7 N | ||
+ | | valign="top"| <math>7\times 0=0</math> | ||
+ | |- | ||
+ | |6 N | ||
+ | | valign="top"| <math>-6\times 0\textrm{.}5=-3</math> | ||
+ | |- | ||
+ | |5 N | ||
+ | | valign="top"| <math>5\times 1\textrm{.}2=6</math> | ||
+ | |- | ||
+ | |4 N | ||
+ | | valign="top"| <math>4\times 0\textrm{.}5=2</math> | ||
+ | |- | ||
+ | |Total Moment | ||
+ | | valign="top"| <math>0-9\textrm{.}6+0-3+6+2=-4\textrm{.}6\text{ Nm}</math> | ||
+ | |||
|} | |} |
Nuvarande version
Theory | Exercises |
Key Points
The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O.
\displaystyle \text{Moment }=Fd
\displaystyle \text{Moment }=Fd\sin \theta
Clockwise moments are negative.
Anti-clockwise moments are positive.
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
Solution
Force | Moment (Nm) |
5N at O | \displaystyle 5\times 0=0 |
8 N | \displaystyle -8\times 1\textrm{.}2=-9\textrm{.}6 |
7 N | \displaystyle 7\times 0=0 |
6 N | \displaystyle -6\times 0\textrm{.}5=-3 |
5 N | \displaystyle 5\times 1\textrm{.}2=6 |
4 N | \displaystyle 4\times 0\textrm{.}5=2 |
Total Moment | \displaystyle 0-9\textrm{.}6+0-3+6+2=-4\textrm{.}6\text{ Nm} |