Lösung 3.2:5d

Aus Online Mathematik Brückenkurs 2

Version vom 17:45, 14. Sep. 2009 von Silke2 (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Wenn wir eine komplexe Zahl durch eine andere dividieren, subtrahieren wir das Argument des Nenners vom Argument des Zählers.

Das Argument von \displaystyle i/(1+i) ist daher

\displaystyle \arg\frac{i}{1+i} = \arg i - \arg (1+i)\,\textrm{.}

Die Argumente von \displaystyle i und \displaystyle 1+i erhalten wir, indem wir die Zahlen in der komplexen Zahlenebene einzeichnen und ein wenig Trigonometrie anwenden.

Daher erhalten wir

\displaystyle \arg\frac{i}{1+i} = \arg i - \arg (1+i) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}\,\textrm{.}