Lösung 3.1:2b

Aus Online Mathematik Brückenkurs 2

Version vom 11:56, 22. Aug. 2009 von Moni (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Nachdem die beiden Brüche nicht denselben Nenenr haben, können wir sie nicht direkt addieren. Am einfachsten wird es wenn wir beide Brüche zuerst berechnen und dann addieren.

Wir erweitern beide Brüche mit den konjugiert komplexen Nenner vom jeweiligen Bruch,

\displaystyle \begin{align}

\frac{3i}{4-6i}-\frac{1+i}{3+2i} &= \frac{3i(4+6i)}{(4-6i)(4+6i)}-\frac{(1+i)(3-2i)}{(3+2i)(3-2i)}\\[5pt] &= \frac{3i\cdot 4 + 3i\cdot 6i}{4^2-(6i)^2}-\frac{1\cdot 3 - 1\cdot 2i + i \cdot 3 - i\cdot 2i}{3^2-(2i)^2}\\[5pt] &= \frac{12i + 18i^2}{16+36}-\frac{3 - 2i + 3i - 2i^2}{9+4}\\[5pt] &= \frac{-18+12i}{52}-\frac{3 +(-2 + 3)i + 2}{13}\\[5pt] &= \frac{-18+12i}{52}-\frac{5 +i}{13}\,\textrm{.} \end{align}

Jetzt erweitern wir den letzten Bruch mit 4, sodass beide Brüche denselben Nenner bekommen,

\displaystyle \begin{align}

\frac{-18+12i}{52}-\frac{(5 +i)\cdot 4}{13\cdot 4}&=\frac{-18+12i}{52}-\frac{20+4i}{52}\\[5pt] &= \frac{-18+12i-20-4i}{52}\\[5pt] &= \frac{-38+8i}{52}\\[5pt] &= -\frac{19}{26}+\frac{2}{13}\,i\,\textrm{.} \end{align}