Lösung 1.2:3a
Aus Online Mathematik Brückenkurs 2
Als erster Schritt berechnen wir die Ableitung der äußeren Logarithmusfunktion,
\displaystyle \frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
Wir leiten den Ausdruck \displaystyle \sqrt{x}+\sqrt{x+1} Term für Term ab, und erhalten
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
Danach leiten wir die Funktionen \displaystyle \sqrt{x} und \displaystyle \sqrt{x+1} direkt ab,
\displaystyle \begin{align}
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{.} \end{align} |
Schreiben wir die Brüche mit gemeinsamen Nenner erhalten wir
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
Wir kürzen den Bruch mit \displaystyle \sqrt{x+1}+\sqrt{x} und erhalten
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |