Lösung 1.2:1c
Aus Online Mathematik Brückenkurs 2
Der ausdruck ist ein Bruch mit den Zähler \displaystyle x^2+1 und den nenner \displaystyle x+1, und daher verwenden wir die Quotientenregel um die Funktion abzuleiten,
\displaystyle \begin{align}
\Bigl(\frac{x^2+1}{x+1}\Bigr)' &= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt] &= \frac{2x\cdot (x+1) - (x^2+1)\cdot 1}{(x+1)^2}\\[5pt] &= \frac{2x^2+2x-x^2-1}{(x+1)^2}\\[5pt] &= \frac{x^2+2x-1}{(x+1)^2}\,\textrm{.} \end{align} |
Hinweis: Wir können den Zähler durch quadratische Ergänzung umschreiben,
\displaystyle x^2+2x-1 = (x+1)^{2} - 1^2 - 1 = (x+1)^2 - 2 |
und erhalten dadurch
\displaystyle \frac{x^2+2x-1}{(x+1)^2} = \frac{(x+1)^2-2}{(x+1)^2} = 1-\frac{2}{(x+1)^2}\,\textrm{.} |