Lösung 3.3:3c

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

If we take the minus sign out in front of the whole expression,

\displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,,

and collect together the first-degree terms,

\displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,,

we can then complete the square of the expression inside the outer bracket,

\displaystyle \begin{align}

-\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align}