Aus Online Mathematik Brückenkurs 2
If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation
| \displaystyle w^2=-1\,\textrm{.}
|
|
We know already that this equation has roots
| \displaystyle w=\left\{\begin{align}
-i\,,&\\[5pt]
i\,,&
\end{align}\right.
|
|
so \displaystyle z should satisfy one of the equation's
| \displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.}
|
|
We solve these equations one by one.
- \displaystyle (z+i)/(z-i)=-i:
- Multiply both sides by \displaystyle z-i,
| \displaystyle z+i=-i(z-i)\,\textrm{.}
|
|
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
| \displaystyle z+iz=-1-i\,\textrm{.}
|
|
- This gives
| \displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}
|
|
- \displaystyle (z+i)/(z-i)=i:
- Multiply both sides by \displaystyle z-i,
| \displaystyle z+i=i(z-i)\,\textrm{.}
|
|
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
| \displaystyle z-iz=1-i\,\textrm{.}
|
|
- This gives
| \displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.}
|
|
The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.