Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 2
If we use the definition of \displaystyle \tan x and write the integral as
\displaystyle \int{\tan x\,dx}=\int{\frac{\sin x}{\cos x}\,dx}
we see that the numerator
\displaystyle \sin x
is the derivative of the denominator (apart from the minus sign). Hence, the substitution
\displaystyle u=\cos x
will work,
\displaystyle \begin{align}
& \int{\frac{\sin x}{\cos x}\,dx}=\left\{ \begin{matrix}
u=\cos x \\
du=\left( \cos x \right)^{\prime }\,dx=-\sin x\,dx \\
\end{matrix} \right\} \\
& =-\int{\frac{\,du}{u}}=-\ln \left| u \right|+C=-\ln \left| \cos x \right|+C \\
\end{align}
NOTE:
\displaystyle -\ln \left| \cos x \right|+C
is only a primitive function in intervals in which
\displaystyle \cos x\ne 0.