Lösung 1.2:3c
Aus Online Mathematik Brückenkurs 2
We can write the expression as
\displaystyle \frac{1}{x\sqrt{1-x^{2}}}=\left( x\sqrt{1-x^{2}} \right)^{-1},
and then we see that we have "something raised to \displaystyle -\text{1}", which can be differentiated one step by using the chain rule:
\displaystyle \begin{align}
& \frac{d}{dx}\left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{-1}=-1\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{\prime } \\
& =-\frac{1}{\left( x\sqrt{1-x^{2}} \right)^{2}}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\
\end{align}
The next step is to differentiate the product
\displaystyle x\centerdot \sqrt{1-x^{2}}
using the product rule:
\displaystyle \begin{align}
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \left( x \right)^{\prime }\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( 1\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\
\end{align}
The expression
\displaystyle \sqrt{1-x^{2}}
is of the type "root of something", so we use the chain rule to differentiate,
\displaystyle \begin{align}
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\left( 1-x^{2} \right)^{\prime } \right) \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right) \right) \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}} \right) \\
\end{align}
We write the expression on the right over a common denominator:
\displaystyle \begin{align} & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{\left( \sqrt{1-x^{2}} \right)^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\ & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\ & =-\frac{1-2x^{2}}{x^{2}\left( 1-x^{2} \right)^{{3}/{2}\;}} \\ \end{align}
NOTE: When we make simplifications of the form
\displaystyle \left( \sqrt{1-x^{2}} \right)^{2}=1-x^{2}, we assume that both sides are well defined (i.e. in this case that
\displaystyle x
lies between
\displaystyle -\text{1}
and
\displaystyle \text{1}
).