Lösung 3.3:2d
Aus Online Mathematik Brückenkurs 2
Lösen wir die Gleichung für \displaystyle w=z-1 haben wir eine übliche komplexe Wurzelgleichung.
\displaystyle w^4=-4\,\textrm{.} |
Diese Gleichung lösen wir indem wir alle Zahlen auf Polarform bringen und das Moivreschen Gesetz benutzen.
\displaystyle \begin{align}
w &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] -4 &= 4(\cos\pi + i\sin\pi)\,, \end{align} |
und erhalten die Gleichung
\displaystyle r^4(\cos 4\alpha + i\sin 4\alpha) = 4(\cos\pi + i\sin\pi)\,\textrm{.} |
Wir vergleichen den Betrag und das Argument der beiden Seiten,
\displaystyle \left\{\begin{align}
r^4 &= 4\,,\\[5pt] 4\alpha &= \pi + 2n\pi\,,\quad\text{(n ist eine beliebige natürliche Zahl),} \end{align} \right. |
und erhalten
\displaystyle \left\{\begin{align}
r &= \sqrt[4]{4} = \sqrt{2}\,,\\[5pt] \alpha &= \frac{\pi}{4}+\frac{n\pi}{2}\,,\quad\text{(n ist eine beliebige natürliche Zahl).} \end{align}\right. |
Für \displaystyle n=0, \displaystyle 2 und \displaystyle 3, nimmt das Argument \displaystyle \alpha verschiedene Werte an
\displaystyle \frac{\pi}{4}, \displaystyle \quad\frac{3\pi}{4}, \displaystyle \quad\frac{5\pi}{4}\quadund\displaystyle \quad\frac{7\pi}{4}\,, |
Während wir für andere \displaystyle n dieselben Argumente erhalten, die sich nur durch ein Vielfaches von \displaystyle 2\pi unterscheiden. Also haben wir die vier Lösungen
\displaystyle w=\left\{\begin{align}
&\sqrt{2}\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\Bigr) \end{align}\right. = \left\{\begin{align} 1+i\,,&\\[5pt] -1+i\,,&\\[5pt] -1-i\,,&\\[5pt] 1-i\,\textrm{,} \end{align}\right. |
und die Lösungen für z sind
\displaystyle z=\left\{\begin{align}
&2+i\,,\\[5pt] &i\,,\\[5pt] &-i\,,\\[5pt] &2-i\,\textrm{.} \end{align}\right. |