1.1 Einführung zur Differentialrechnung
Aus Online Mathematik Brückenkurs 2
Theorie | Übungen |
Inhalt:
- Die Definition der Ableitung
- Die Ableitungen von \displaystyle x^\alpha, \displaystyle \ln x, \displaystyle e^x, \displaystyle \cos x, \displaystyle \sin x und \displaystyle \tan x.
- Die Ableitungen von Summen und Differenzen.
- Tangenten und Normalen.
Lernziele:
Nach diesem Abschnitt solltest Du folgendes wissen:
- Die Ableitung \displaystyle f^{\,\prime}(a) einer Funktion ist die Steigung von \displaystyle y=f(x) an der Stelle \displaystyle x=a.
- Die Ableitung beschreibt eine momentane Veränderung einer Funktion.
- Die Ableitung ist nicht immer definiert (wie bei der Funktion \displaystyle f(x)=\vert x\vert an der Stelle \displaystyle x=0).
- Wie man \displaystyle x^\alpha, \displaystyle \ln x, \displaystyle e^x, \displaystyle \cos x, \displaystyle \sin x und \displaystyle \tan x sowie Summen und Differenzen davon ableitet.
- Wie man die Tangente oder die Normale einer Funktion bestimmt.
- Die Ableitung in \displaystyle x_0 wird mit \displaystyle f^{\,\prime}(x_0) oder \displaystyle \frac{df}{dx}(x_0) bezeichnet.
A - Einführung
Bei der Analyse von Funktionen und deren Graphen will man meist wissen, wie sich eine Funktion verändert, z.B. ob sie steigend oder abnehmend ist und wie steil sie ist.
Daher führt man den Begriff Sekantensteigung ein. Die Sekantensteigung ist ein Maß wie steil eine Funktion ist. Kennt man zwei Punkte am Graph, kann man die Sekantensteigung \displaystyle \frac{\Delta y}{\Delta x} berechnen
\displaystyle \frac{\Delta y}{\Delta x}= \frac{\text{Unterschied in @(i)y@(/i)}}{\text{Unterschied in @(i)x@(/i)}} |
Beispiel 1
Die linearen Funktionen \displaystyle f(x)=x und \displaystyle g(x)=-2x haben überall dieselbe Sekantensteigung, nämlich \displaystyle 1 und \displaystyle −2.
|
| |
Graph von f(x) = x hat die Steigung 1. | Graph von g(x) = - 2x hat die Steigung - 2. |
Für eine lineare Funktion ist die Sekantensteigung dasselbe wie die Steigung.
Falls ein Auto mit der Geschwindigkeit 80 km/h unterwegs ist, kommt es nach t Stunden s km. Also kann man die Strecke s(t), die das Auto zurückgelegt hat, als \displaystyle s(t)=80 t schreiben. Die Steigung dieser Funktion ist genau dasselbe wie die Geschwindigkeit. Fall das Auto nicht immer dieselbe Geschwindigkeit hat, ist natürlich auch die Steigung überall anders. Man kann natürlich immer noch die Sekantensteigung berechnen und dies wird einer Durchschnittsgeschwindigkeit entsprechen. In diesem Abschnitt werden wir uns aber darauf konzentrieren, die momentane Steigung (also Momentangeschwindigkeit) zu berechnen.
Beispiel 2
Für die Funktion \displaystyle f(x)=4x-x^2 gilt, dass \displaystyle f(1)=3, \displaystyle f(2)=4 und \displaystyle f(4)=0.
- Die Sekantensteigung von \displaystyle x = 1
bis \displaystyle x = 2 ist
\displaystyle \frac{\Delta y}{\Delta x}= \frac{f(2)-f(1)}{2-1} = \frac{4-3}{1}=1\,\mbox{,}
- Die Sekantensteigung von \displaystyle x = 2 bis \displaystyle x = 4 ist
\displaystyle \frac{\Delta y}{\Delta x}= \frac{f(4)-f(2)}{4-2} = \frac{0-4}{2}=-2\,\mbox{,}
- Zwischen \displaystyle x = 1 und \displaystyle x = 4 ist die Sekantensteigung
\displaystyle \frac{\Delta y}{\Delta x} = \frac{f(4)-f(1)}{4-1} = \frac{0-3}{3} = -1\,\mbox{.}
|
| |
Zwischen x = 1 und x = 2 hat die Funktion die Sekantsteigung 1/1 = 1. | Zwischen x = 1 und x = 4 hat die Funktion die Sekantsteigung (-3)/3 = -1. |
B - Definition der Ableitung
Um die momentane Steigung in einen Punkt P zu berechnen, führen wir einen anderen Punkt Q ein und berechnen die Sekantensteigung zwischen P und Q:
Sekantensteigung
\displaystyle \frac{\Delta y}{\Delta x}
= \frac{f(x+h)-f(x)}{(x+h)-x}= \frac{f(x+h)-f(x)}{h}\,\mbox{.} |
Wenn wir den Punkt Q immer näher dem Punkt P wählen, erhalten wir zum Schluss die momentane Steigung im Punkt P. Dies nennt man die Ableitung von \displaystyle f(x) im Punkt P.
Die Ableitung von \displaystyle f(x) schreibt man \displaystyle f^{\,\prime}(x) und wird definiert als:
Die Ableitung von \displaystyle f(x) ist
\displaystyle f^{\,\prime}(x)
= \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} \,\mbox{.} |
Falls \displaystyle f^{\,\prime}(x_0) existiert, sagt man, dass die Funktion \displaystyle f(x) differenzierbar an der Stelle \displaystyle x=x_0 ist.
Es gibt viele Bezeichnungen für die Ableitung, hier sind einige.
Funktion | Ableitung |
---|---|
\displaystyle f(x) | \displaystyle f^{\,\prime}(x) |
\displaystyle y | \displaystyle y^{\,\prime} |
\displaystyle y | \displaystyle Dy |
\displaystyle y | \displaystyle \dfrac{dy}{dx} |
\displaystyle s(t) | \displaystyle s^{\,\prime}(t) |
C - Das Vorzeichen der Ableitung
Das Vorzeichen (+/-) sagt uns, ob die Funktion ab- oder zunehmend ist:
- \displaystyle f^{\,\prime}(x) > 0 (positive Ableitung) bedeutet, dass \displaystyle f(x) zunehmend ist.
- \displaystyle f^{\,\prime}(x) < 0 (negative Ableitung) bedeutet, dass \displaystyle f(x) abnehmend ist.
- \displaystyle f^{\,\prime}(x) = 0 (Ableitung ist null) bedeutet, dass \displaystyle f(x) waagerecht ist.
Beispiel 3
- \displaystyle f(2)=3\ bedeutet, dass in \displaystyle x=2 der Wert der Funktion \displaystyle 3 ist.
- \displaystyle f^{\,\prime}(2)=3\ bedeutet, dass in \displaystyle x=2 die Steigung der Funktion \displaystyle 3 ist.
Beispiel 4
Aus der Figur sehen wir, dass
\displaystyle \begin{align*} f^{\,\prime}(a) &> 0\\[4pt] f(b) &= 0\\[4pt] f^{\,\prime}(c) &= 0\\[4pt] f(d) &= 0\\[4pt] f^{\,\prime}(e) &= 0\\[4pt] f(e) &< 0\\[4pt] f^{\,\prime}(g) &> 0 \end{align*} |
|
Beachten Sie den Unterschied zwischen \displaystyle f(x) und \displaystyle f^{\,\prime}(x).
Beispiel 5
Die Temperatur \displaystyle T(t) in einer Thermoskanne nach \displaystyle t Minuten ist gegeben. Erklären Sie folgendes mit mathematischen Begriffen:
- \displaystyle T(10)=80
Nach 10 Minuten ist die Temperatur 80°. - \displaystyle T'(2)=-3
Zum Zeitpunkt \displaystyle t=2 nimmt die Temperatur 3° pro Minute ab.
(Die Ableitung ist negativ und deshalb nimmt die Temperatur ab.)
Beispiel 6
Die Funktion \displaystyle f(x)=|x| ist an der Stelle \displaystyle x=0 nicht differenzierbar, da rechts von 0 die Steigung der Tangente 1 beträgt während links von 0 die Steigung der Tangente -1 beträgt . Man kann also die Steigung der Funktion im Punkt \displaystyle (0,0) nicht bestimmen (Siehe Figur).
Man kann auch sagen, dass \displaystyle f^{\,\prime}(0) nicht existiert oder nicht definiert ist.
D - Ableitungen von Funktionen
Mittels der Definition der Ableitung einer Funktion kann man die Ableitungen von im Prinzip allen Funktionen berechnen.
Beispiel 7
Wenn \displaystyle f(x)=x^2 ist, ist laut der Definition der Ableitung
\displaystyle \frac{(x+h)^2-x^2}{h}=\frac{x^2+2hx+h^2-x^2}{h}
= \frac{h(2x+h)}{h} = 2x + h\,\mbox{.} |
Lassen wir \displaystyle h sich Null nähern, erhalten wir \displaystyle 2x. Also ist die Steigung der Funktion \displaystyle y=x^2, \displaystyle 2x an der Stelle x. Also ist die Ableitung von \displaystyle x^2, \displaystyle 2x.
Auf ähnliche Weise kann man mehr allgemeine Formeln für die Ableitung von Funktionen zeigen:
Funktion | Ableitung |
---|---|
\displaystyle x^n | \displaystyle nx^{n-1} |
\displaystyle \ln x | \displaystyle 1/x |
\displaystyle e^x | \displaystyle e^x |
\displaystyle \sin x | \displaystyle \cos x |
\displaystyle \cos x | \displaystyle -\sin x |
\displaystyle \tan x | \displaystyle 1/\cos^2 x |
Außerdem besitzt die Ableitung einige wichtige Eigenschaften;
\displaystyle (f(x) +g(x))^{\,\prime}
= f^{\,\prime}(x) + g'(x)\,\mbox{.} |
Und, wenn k eine Konstante ist, ist
\displaystyle (k \, f(x))^{\,\prime}
= k \, f^{\,\prime}(x)\,\mbox{.} |
Beispiel 8
- \displaystyle D(2x^3 - 4x + 10 - \sin x)
= 2\,D x^3 - 4\,D x + D 10 - D \sin x
\displaystyle \phantom{D(2x^3 - 4x + 10 - \sin x)}{} = 2\cdot 3x^2 - 4\cdot 1 + 0 - \cos x - \displaystyle y= 3 \ln x + 2e^x \quad ergibt \displaystyle \quad y'= 3 \cdot\frac{1}{x} + 2 e^x = \frac{3}{x} + 2 e^x\,.
- \displaystyle \frac{d}{dx}\Bigl(\frac{3x^2}{5} - \frac{x^3}{2}\Bigr) = \frac{d}{dx}\bigl(\tfrac{3}{5}x^2 - \tfrac{1}{2}x^3\bigr) = \tfrac{3}{5}\cdot 2x - \tfrac{1}{2}\cdot 3x^2 = \tfrac{6}{5}x - \tfrac{3}{2}x^2\,.
- \displaystyle s(t)= v_0t + \frac{at^2}{2} \quad ergibt \displaystyle \quad s'(t)=v_0 + \frac{2at}{2} = v_0 + at\,.
Beispiel 9
- \displaystyle f(x) = \frac{1}{x} = x^{-1} \quad ergibt \displaystyle \quad f^{\,\prime}(x) = -1 \cdot x^{-2} = -\frac{1}{x^2}\,.
- \displaystyle f(x)= \frac{1}{3x^2} = \tfrac{1}{3}\,x^{-2} \quad ergibt \displaystyle \quad f^{\,\prime}(x) = \tfrac{1}{3}\cdot(-2)x^{-3} = -\tfrac{2}{3} \cdot x^{-3} = -\frac{2}{3x^3}\,.
- \displaystyle g(t) = \frac{t^2 - 2t + 1}{t} = t -2 + \frac{1}{t} \quad ergibt \displaystyle \quad g'(t) = 1 - \frac{1}{t^2}\,.
- \displaystyle y = \Bigl( x^2 + \frac{1}{x} \Bigr)^2
= (x^2)^2 + 2 \, x^2 \cdot \frac{1}{x} + \Bigl(\frac{1}{x} \Bigr)^2
= x^4 + 2x + x^{-2}
\displaystyle \qquad\quad ergibt \displaystyle \quad y' =4x^3 + 2 -2x^{-3} = 4x^3 + 2 - \frac{2}{x^3}\,.
Beispiel 10
Die Funktion \displaystyle f(x)=x^2 + x^{-2} hat die Ableitung
\displaystyle f^{\,\prime}(x) = 2x^1 -2x^{-3}
= 2x - \frac{2}{x^3}\,\mbox{.} |
Also ist zum Beispiel \displaystyle f^{\,\prime}(2) = 2\cdot 2 - 2/2^3= 4- \frac{1}{4} = \frac{15}{4} und \displaystyle f^{\,\prime}(-1) = 2 \cdot (-1) - 2/(-1)^3 = -2 + 2 = 0. Die Ableitung \displaystyle f'(0) ist aber nicht definiert.
Beispiel 11
Ein Gegenstand bewegt sich so wie \displaystyle s(t) = t^3 -4t^2 +5t, wo \displaystyle s(t) km die Strecke des Gegenstandes nach \displaystyle t Stunden ist. Berechnen Sie \displaystyle s'(3) und erklären Sie die Bedeutung dieses Ausdruckes.
Wir berechnen die Ableitung der Funktion s(t)
\displaystyle s'(t) = 3t^2 - 8t +5\qquad
\text{ergibt}\qquad s'(3) = 3 \cdot 3^2 - 8 \cdot 3 + 5 = 8\,\mbox{.} |
Also hat der Gegenstand die Geschwindigkeit 8 km/h nach 3 Stunden.
Beispiel 12
Die Gesamtkosten \displaystyle T in Euro für die Herstellung von \displaystyle x Gegenständen sind
\displaystyle T(x) = 40000 + 370x -0{,}09x^2, \quad
\text{für} \ 0 \le x \le 200\,\mbox{.} |
Berechne und erkläre folgende Ausdrücke
- \displaystyle T(120)
\displaystyle T(120)=40000 + 370 \cdot 120 - 0{,}09 \cdot 120^2 = 83104\,.
Die Gesamtkosten für die Herstellung von 120 Gegenständen sind 83.104 Euro. - \displaystyle T'(120)
Die Ableitung ist \displaystyle T^{\,\prime}(x)= 370 - 0\textrm{.}18x und daher ist\displaystyle T^{\,\prime}(120) = 370 - 0\textrm{.}18 \cdot 120 \approx 348\textrm{.}
Tangenten und Normalen
Eine Tangente ist eine Gerade, die tangential zur Kurve ist.
Eine Normale ist eine Gerade, die rechtwinklig zur Kurve und daher auch rechtwinklig zur Tangente ist.
Für rechtwinklige Geraden ist das Produkt deren Steigungen immer \displaystyle –1. Wenn also die Steigung der Tangente \displaystyle k_T ist, und die Steigung der Normalen \displaystyle k_N ist, ist \displaystyle k_T \, k_N = -1. Nachdem wir die Tangente durch Ableitung bestimmen können, können wir auch die Normale durch Ableitung bestimmen.
Beispiel 13
Bestimme die Tangente der Funktion \displaystyle y=x^2 + 1 im Punkt \displaystyle (1,2).
Wir schreiben die Gleichung der Tangente \displaystyle y = kx + m. Nachdem die Gerade die Kurve bei \displaystyle x=1 berührt, ist \displaystyle k= y'(1), also
\displaystyle y' = 2x,\qquad y'(1) = 2\cdot 1 = 2. |
Nachdem die Tangente durch den Punkt \displaystyle (1,2) geht, haben wir
\displaystyle 2 = 2 \cdot 1 + m \quad \Leftrightarrow \quad
m = 0 . |
Die Tangente ist also \displaystyle y=2x.
Die Steigung der Normalen ist \displaystyle k_N = -\frac{1}{k_T} = -\frac{1}{2} .
Zusätzlich geht die Normale durch den Punkt \displaystyle (1, 2), und daher ist
\displaystyle 2= -\frac{1}{2}\cdot 1 + m
\quad \Leftrightarrow \quad m = \frac{5}{2} . |
Die Normale ist also \displaystyle y= -\frac{x}{2} + \frac{5}{2} = \frac{5-x}{2}.
|
| |
Tangente \displaystyle y=2x | Normale \displaystyle y=\frac{5-x}{2} |
Beispiel 14
Die Kurve \displaystyle y = 2 \, e^x - 3x hat eine Tangente mit der Steigung \displaystyle –1. Bestimme die Stelle, wo die Kurve die Tangente berührt.
Die Ableitung ist \displaystyle y' = 2 \, e^x -3 und an der gesuchten Stelle muss die Ableitung \displaystyle -1 sein, also \displaystyle y' = -1. Wir erhalten dadurch
mit der Lösung \displaystyle x=0. An der Stelle \displaystyle x=0 hat die Kurve den \displaystyle y-Wert \displaystyle y(0) = 2 \, e^0 - 3 \cdot 0 = 2, und daher ist der tangentiale Punkt \displaystyle (0,2). |
|
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor
Keine Fragen mehr? Dann mache weiter mit den Übungen .