Lösung 3.3:5d
Aus Online Mathematik Brückenkurs 2
Zuerst dividieren wir beide Seiten durch \displaystyle 4+i, sodass wir den der Koeffizient von \displaystyle z^2 1 ist.
\displaystyle z^2 + \frac{1-21i}{4+i}z = \frac{17}{4+i}\,\textrm{.} |
Die beiden komplexen Brüche sind
\displaystyle \begin{align}
\frac{1-21i}{4+i} &= \frac{(1-21i)(4-i)}{(4+i)(4-i)} = \frac{4-i-84i+21i^2}{4^2-i^2}\\[5pt] &= \frac{-17-85i}{16+1} = \frac{-17-85i}{17} = -1-5i\,,\\[10pt] \frac{17}{4+i} &= \frac{17(4-i)}{(4+i)(4-i)} = \frac{17(4-i)}{4^2-i^2}\\[5pt] &= \frac{17(4-i)}{17} = 4-i\,\textrm{.} \end{align} |
Die Gleichung ist daher
\displaystyle z^2 - (1+5i)z = 4-i\,\textrm{.} |
und durch quadratische Ergänzung der linken Seite erhalten wir
\displaystyle \begin{align}
\Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1+5i}{2}\Bigr)^2 &= 4-i\,,\\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1}{4}+\frac{5}{2}\,i+\frac{25}{4}i^2 \Bigr) &= 4-i\,,\\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \frac{1}{4} - \frac{5}{2}i + \frac{25}{4} &= 4-i\,, \\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 &= -2+\frac{3}{2}\,i\,\textrm{.} \end{align} |
Lassen wir \displaystyle w=z-\frac{1+5i}{2} sein, erhalten wir die Gleichung
\displaystyle w^2 = -2+\frac{3}{2}\,i |
die wir lösen indem wir annehmen dass \displaystyle w=x+iy,
\displaystyle (x+iy)^2 = -2+\frac{3}{2}\,i |
oder, falls wir die linke Seie erweitern,
\displaystyle x^2-y^2+2xyi = -2+\frac{3}{2}\,i\,\textrm{.} |
Identifizieren wir den Real- und Imaginärteil dieser Gleichung erhalten wir
\displaystyle \begin{align}
x^2-y^2 &= -2\,,\\[5pt] 2xy &= \frac{3}{2}\,, \end{align} |
Berechnen wir den Betrag beider Seiten, erhalten wir eine dritte Gleichung:
\displaystyle x^2 + y^2 = \sqrt{(-2)^2+\bigl(\tfrac{3}{2}\bigr)^2} = \tfrac{5}{2}\,\textrm{.} |
Diese neue Gleichung ist durch die beiden ersten Gleichungen erfüllt, und wir brauchen sie eigentlich nicht, aber die Rechnungen werden einfacher.
Wir erhalten die Gleichungen:
\displaystyle \left\{\begin{align}
x^2-y^2 &= -2\,,\\[5pt] 2xy &= \frac{3}{2}\,,\\[5pt] x^2 + y^2 &= \frac{5}{2}\,\textrm{.} \end{align} \right. |
Von der ersten und der dritten Gleichung können wir leicht \displaystyle x und \displaystyle y lösen.
Wir addieren zuerst die erste Gleichung zur dritten,
\displaystyle x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2 | |
\displaystyle +\ \ | \displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} |
\displaystyle 2x^2 | \displaystyle {}={} | \displaystyle \tfrac{1}{2} |
und wir erhalten \displaystyle x=\pm \tfrac{1}{2}.
Jetzt subtrahieren wir die erste Gleichung von der dritten,
\displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} | |
\displaystyle -\ \ | \displaystyle \bigl(x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2\rlap{\bigr)} |
\displaystyle 2y^2 | \displaystyle {}={} | \displaystyle \tfrac{9}{2} |
also \displaystyle y=\pm\tfrac{3}{2}.
Dies ergibt vier mögliche Lösungen,
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= \tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align} \right. |
von welchen nur zwei die ursprüngliche Gleichung erfüllen.
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. |
Also erhalten wir die Lösungen
\displaystyle w=\frac{1}{2}+\frac{3}{2}\,i\qquad und \displaystyle \qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,, |
und die ursprüngliche Gleichung hat die Lösungen
\displaystyle z=1+4i\qquad und \displaystyle \qquad z=i |
durch die Formel \displaystyle w=z-\frac{1+5i}{2}.
Zuletzt kontrollieren wir ob unsere Lösungen die ursprüngliche Gleichung erfüllen,
\displaystyle \begin{align} z=1+4i:\quad (4+i)z^2+(1-21i)z &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] &= (4+i)(-15+8i)+1-17i+84\\[5pt] &= -60+32i-15i+8i^2+1-17i+84\\[5pt] &= -60+32i-15i-8+1-17i+84\\[5pt] &= 17\,,\\[10pt] z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z &= (4+i)i^2 + (1-21i)i\\[5pt] &= (4+i)(-1)+i-21i^2\\[5pt] &= -4-i+i+21\\[5pt] &= 17\,\textrm{.} \end{align}