Lösung 1.3:2c

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Lokale Extrempunkte einer Funktion sind entweder:

  1. stationäre Punkte mit \displaystyle f^{\,\prime}(x)=0,
  2. Singuläre Punkte, in denen die Funktion nicht differenzierbar ist, oder
  3. Endpunkte.

Da die Funktion ein Polynom ist, ist sie überall definiert und überall differenzierbar. Also gibt es keine Extrempunkte, die die Bedingungen 2 und 3 erfüllen.

Die Ableitung null gesetzt, ergibt folgende Gleichung

\displaystyle f^{\,\prime}(x) = 6x^2+6x-12 = 0\,\textrm{.}

Dividieren wir durch 6 erhalten wir durch quadratische Ergänzung

\displaystyle \Bigl(x+\frac{1}{2}\Bigr)^2 - \Bigl(\frac{1}{2}\Bigr)^2 - 2 = 0\,\textrm{.}

Und wir erhalten die Gleichung

\displaystyle \Bigl(x+\frac{1}{2}\Bigr)^2 = \frac{9}{4}

mit den Lösungen

\displaystyle \begin{align}

x &= -\frac{1}{2}-\sqrt{\frac{9}{4}} = -\frac{1}{2}-\frac{3}{2} = -2\,,\\[5pt] x &= -\frac{1}{2}+\sqrt{\frac{9}{4}} = -\frac{1}{2}+\frac{3}{2} = 1\,\textrm{.} \end{align}

Die Funktion hat also die stationären Puntke \displaystyle x=-2 und \displaystyle x=1.

Wir erstellen eine Vorzeichentabelle und erhalten so die Extrempunkte.

\displaystyle x \displaystyle -2 \displaystyle 1
\displaystyle f^{\,\prime}(x) \displaystyle + \displaystyle 0 \displaystyle - \displaystyle 0 \displaystyle +
\displaystyle f(x) \displaystyle \nearrow \displaystyle 21 \displaystyle \searrow \displaystyle -6 \displaystyle \nearrow

Die Funktion hat also ein lokales Maximum in \displaystyle x=-2 und ein lokales Minimum in \displaystyle x=1.

Berechnen wir die Funktionswerte in einigen Punkten, können wir mit Hilfe der Vorzeichentabelle die Funktion zeichnen.