Lösung 1.3:7

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Wie der Kegel gebaut wird, ist hier illustriert:

Nachdem wir den Volumen des Kegels maximieren wollen, betrachten wir nun die Maße Kegels.

Mit diesen Maßen ist das Volumen des Kegels:

\displaystyle \begin{align}

V &= \frac{1}{3}\text{(Fläche des Kreises)}\cdot\text{(Höhe)}\\[5pt] &= \frac{1}{3}\pi r^{2}h\,\textrm{.} \end{align}

Wir müssen jetzt den Radius \displaystyle r und die Höhe \displaystyle h durch den Winkel \displaystyle \alpha ausdrücken, sodass wir das Volumen \displaystyle V als Funktion von \displaystyle \alpha schreiben können.

Schneiden wir einen Kreissektor mit dem Winkel \displaystyle \alpha aus dem Kreis, ist der Umfang des übriggebliebenen Kreissegments \displaystyle (2\pi-\alpha)R sein, wobei \displaystyle R der ursprüngliche Radius ist.

Der Umfang des oberen Kreises ist aber auch \displaystyle 2\pi r, also haben wir

\displaystyle 2\pi r = (2\pi-\alpha)R\quad\Leftrightarrow\quad r = \frac{2\pi -\alpha}{2\pi}\,R\,\textrm{.}

Jetzt haben wir den neuen Radius \displaystyle r als Funktion des Winkels \displaystyle \alpha und dem ursprünglichen Radius \displaystyle R ausgedrückt.

Um die Höhe zu bestimmen, benutzen wir den Satz des Pythagoras

Also haben wir

\displaystyle \begin{align}

h &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\,R\Bigr)^2}\\[5pt] &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2R^2}\\[5pt] &= R\sqrt{1-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2}\,\textrm{.} \end{align}

Jetzt haben wir den Radius \displaystyle r und die Höhe \displaystyle h als Funktionen von \displaystyle \alpha und \displaystyle R, geschrieben. Das Volumen des Kegels ist also

\displaystyle \begin{align}

V &= \frac{1}{3}\pi r^2 h\\[5pt] &= \frac{1}{3}\pi \Bigl(\frac{2\pi-\alpha}{2\pi}R\Bigr)^2 R\sqrt{1-\Bigl( \frac{2\pi-\alpha}{2\pi}\Bigr)^2}\\[5pt] &= \frac{1}{3}\pi R^3\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2 \sqrt{1-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2}\,\textrm{.} \end{align}

Unser Problem ist jetzt:

Maximiere \displaystyle V(\alpha) = \frac{1}{3}\pi R^3 \Bigl(\frac{2\pi-\alpha}{2\pi} \Bigr)^2\sqrt{1-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2}\,, wo \displaystyle 0\le \alpha \le 2\pi\,.

Bevor wir anfangen die Funktion abzuleiten, sehen wir, dass dar Winkel \displaystyle \alpha nur in \displaystyle (2\pi-\alpha)/2\pi-Termen auftritt, um das Problem zu vereinfachen, können wir das Volumen genauso in Bezug auf die Variable \displaystyle x=(2\pi-\alpha)/2\pi maximieren.

Maximiere \displaystyle V(x) = \frac{1}{3}\pi R^3x^2\sqrt{1-x^2}\,, wenn \displaystyle 0\le x\le 1\,.

Wenn \displaystyle x=0 oder \displaystyle x=1, ist der Volumen null, und nachdem die Funktion überall außer in \displaystyle x=1 ableitbar ist, nimmt der Volumen sein Maxima an einen stationären Punkt an.

Wir leiten die Funktion ab,

\displaystyle V'(x) = \frac{1}{3}\pi R^3\cdot 2x\cdot \sqrt{1-x^2} + \frac{1}{3}\pi R^3x^2\cdot\frac{1}{2\sqrt{1-x^2}}\cdot (-2x)\,,

und vereinfachen den Ausdruck, indem wir so viele Faktoren wir möglich herausziehen,

\displaystyle \begin{align}

V'(x) &= \frac{2}{3}\pi R^3x\sqrt{1-x^2} - \frac{1}{3}\pi R^3x^3\frac{1}{\sqrt{1-x^2}}\\[5pt] &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}\bigl[ 2(1-x^2)-x^2\bigr]\\[5pt] &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}(2-3x^2)\,\textrm{.} \end{align}

Die Ableitung ist null wenn \displaystyle x=0 (dies ist auch ein Endpunkt) oder wenn \displaystyle 2-3x^2=0, also wenn \displaystyle x=\sqrt{2/3}\,. (Der Punkt \displaystyle x=-\sqrt{2/3} liegt außerhalb des Gebietes \displaystyle 0\le x\le 1.)

Durch einer Vorzeichentabelle erhalten wir die Vorzeichen der Faktoren,

\displaystyle x \displaystyle 0 \displaystyle \sqrt{\tfrac{2}{3}} \displaystyle 1
\displaystyle x \displaystyle 0 \displaystyle + \displaystyle + \displaystyle + \displaystyle +
\displaystyle \sqrt{1-x^2} \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle 0
\displaystyle 2-3x^2 \displaystyle + \displaystyle + \displaystyle 0 \displaystyle - \displaystyle -


und erhalten dadurch das Vorzeichen der Ableitung selbst


\displaystyle x \displaystyle 0 \displaystyle \sqrt{\tfrac{2}{3}} \displaystyle 1
\displaystyle V'(x) \displaystyle 0 \displaystyle + \displaystyle 0 \displaystyle -  
\displaystyle V(x) \displaystyle 0 \displaystyle \nearrow \displaystyle \tfrac{4}{9\sqrt{3}}\pi R^3 \displaystyle \searrow \displaystyle 0

Wir sehen hier dass \displaystyle x=\sqrt{2/3} ein globales Maxima ist. \displaystyle x = \sqrt{2/3} entspricht den Winkel \displaystyle \alpha:

\displaystyle \sqrt{\frac{2}{3}}=\frac{2\pi-\alpha }{2\pi}\quad \Leftrightarrow\quad \alpha = 2\pi \bigl(1-\sqrt{2/3}\,\bigr)\ \text{radians.}