Lösung 1.3:3d
Aus Online Mathematik Brückenkurs 2
Lokale Extrempunkte einer Funktion sind entweder:
- stationäre Punkte, wo \displaystyle f^{\,\prime}(x)=0,
- Singuläre Punkte, wo die Funktion nicht ableitbar ist, oder
- Endpunkte.
Wir untersuchen zuerst die Bedienungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert wenn der Nenner null ist. Nachdem der Nenner \displaystyle 1+x^{4} ist, wird er immer positiv. Wir leiten die Funktion mit der Quotientenregel ab um die stationären Punkte zu finden,
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{\bigl(1+x^2\bigr)^{\prime}\cdot\bigl(1+x^4\bigr) - \bigl(1+x^2\bigr)\cdot \bigl(1+x^4\bigr)^{\prime}}{\bigl(1+x^4\bigr)^2}\\[5pt] &= \frac{2x\bigl(1+x^4\bigr) - \bigl(1+x^2\bigr)4x^3}{\bigl(1+x^4\bigr)^2}\\[5pt] &= \frac{2x+2x^5-4x^3-4x^5}{\bigl(1+x^4\bigr)^2}\\[5pt] &= \frac{2x\bigl(1-2x^2-x^4\bigr)}{\bigl(1+x^4\bigr)^2}\,\textrm{.} \end{align} |
Der Ausdruck ist null wenn der Zähler null ist, und wir erhalten die Gleichung
\displaystyle 2x\bigl(1-2x^2-x^4\bigr) = 0\,\textrm{.} |
Die linke Seite ist null wenn einer der Faktoren \displaystyle x oder \displaystyle 1-2x^2-x^4 null ist. Also ist \displaystyle x=0 oder
\displaystyle 1 - 2x^2 - x^4 = 0\,\textrm{.} |
Die letzte Gleichung lösen wir am einfachsten wenn wir \displaystyle t=x^{2} substituieren,
\displaystyle 1-2t-t^{2}=0\,\textrm{.} |
Durch quadratische Ergänzung erhalten wir
\displaystyle \begin{align}
t^2 + 2t - 1 &= 0\,,\\[5pt] (t+1)^2 - 1^2 - 1 &= 0\,,\\[5pt] (t+1)^2 &= 2\,, \end{align} |
und die Lösungen sind \displaystyle t=-1\pm \sqrt{2}. Nur einer dieser Lösungen ist positiv, und kann also \displaystyle x^{2} sein. Also ist \displaystyle t=-1+\sqrt{2}=x^2\,.
Die Funktion hat also drei stationäre Punkte, \displaystyle x=-\sqrt{\sqrt{2}-1}, \displaystyle x=0 und \displaystyle x=\sqrt{\sqrt{2}-1}\,.
Wir bestimmen deren Charakter indem wir das Vorzeichen der zweiten Ableitung bestimmen. Wir wissen schon dass
\displaystyle f^{\,\prime}(x) = \frac{2x\bigl(1-2x^2-x^4\bigr)}{\bigl(1+x^4\bigr)^2} |
und durch quadratische Ergänzung von \displaystyle 1-2x^2-x^4 in Bezug auf \displaystyle x^{2} erhalten wir,
\displaystyle \begin{align}
1-2x^2-x^4 &= 1-\bigl(2x^2+x^4\bigr)\\[5pt] &= 1-\bigl(\bigl(x^2+1\bigr)^2-1^2\bigr)\\[5pt] &= 2-\bigl(x^2+1\bigr)^2 \end{align} |
Die Ableitung ist also
\displaystyle f^{\,\prime}(x) = \frac{2x\bigl(2-\bigl(x^2+1\bigr)^2\bigr)}{\bigl(1+x^4\bigr)^2} |
Faktoren wo wir einfach die Vorzeichen der einzelnen erhalten.
\displaystyle x | \displaystyle -\sqrt{ \sqrt{2} - 1} | \displaystyle 0 | \displaystyle \sqrt{ \sqrt{2} - 1} | ||||
\displaystyle 2x | \displaystyle - | \displaystyle - | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + |
\displaystyle 2 - (x^2 + 1)^2 | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle 0 | \displaystyle - |
\displaystyle (x^4 + 1)^2 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
Multiplizieren wir die einzelnen Faktoren, erhalten das Vorzeichen der Ableitung.
\displaystyle x | \displaystyle -\sqrt{ \sqrt{2} - 1} | \displaystyle 0 | \displaystyle \sqrt{ \sqrt{2} - 1} | ||||
\displaystyle \insteadof{2 - (x^2 + 1)^2}{f^{\, \prime} (x)} | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle 0 | \displaystyle - |
\displaystyle f(x) | \displaystyle \nearrow | \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) | \displaystyle \searrow | \displaystyle 1 | \displaystyle \nearrow | \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) | \displaystyle \searrow |
Die Funktion hat also ein lokales Maxima im Punkt \displaystyle x=\pm \sqrt{\sqrt{2}-1} ind ein lokales Minima im Punkt \displaystyle x=0.