Lösung 1.3:2c
Aus Online Mathematik Brückenkurs 2
Lokale Extrempunkte einer Funktion sind entweder:
- stationäre Punkte, wo \displaystyle f^{\,\prime}(x)=0,
- Singuläre Punkte, wo die Funktion nicht ableitbar ist, oder
- Endpunkte.
Nachdem die Funktion ein Polynom ist, ist sie überall definiert, und überall ableitbar. Also gibt es keine Extrempunkte die die Bedienungen 2 und 3 erfüllen.
Die Ableitung als null gesetzt ergibt folgende Gleichung
\displaystyle f^{\,\prime}(x) = 6x^2+6x-12 = 0\,\textrm{.} |
Dividieren wir durch 6 erhalten wir durch quadratische Ergänzung
\displaystyle \Bigl(x+\frac{1}{2}\Bigr)^2 - \Bigl(\frac{1}{2}\Bigr)^2 - 2 = 0\,\textrm{.} |
Und wir erhalten die Gleichung
\displaystyle \Bigl(x+\frac{1}{2}\Bigr)^2 = \frac{9}{4} |
mit den Lösungen
\displaystyle \begin{align}
x &= -\frac{1}{2}-\sqrt{\frac{9}{4}} = -\frac{1}{2}-\frac{3}{2} = -2\,,\\[5pt] x &= -\frac{1}{2}+\sqrt{\frac{9}{4}} = -\frac{1}{2}+\frac{3}{2} = 1\,\textrm{.} \end{align} |
This means that if the function has several extreme points, they must be among \displaystyle x=-2 and \displaystyle x=1.
Wir erstellen eine Vorzeichentabelle, und erhalten so die Extrempunkte.
\displaystyle x | \displaystyle -2 | \displaystyle 1 | |||
\displaystyle f^{\,\prime}(x) | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle 0 | \displaystyle + |
\displaystyle f(x) | \displaystyle \nearrow | \displaystyle 21 | \displaystyle \searrow | \displaystyle -6 | \displaystyle \nearrow |
Die Funktion hat also ein lokales Maxima in \displaystyle x=-2 und ein lokales Minima in \displaystyle x=1.
Berechnen wir den Funktionswert in einigen Punkten, können wir mit Hilfe der Vorzeichentabelle die Funktion zeichnen.