Lösung 1.3:3e
Aus Online Mathematik Brückenkurs 2
As always, a function can only have local extreme points at one of the following types of points,
- critical points, i.e. where \displaystyle f^{\,\prime}(x)=0,
- points where the function is not differentiable, and
- endpoints of the interval of definition.
We investigate these three cases.
- We obtain the critical points by setting the derivative equal to zero,
\displaystyle \begin{align} f^{\,\prime}(x) &= (x^2-x-1)'e^x + (x^2-x-1)\bigl(e^x\bigr)^{\prime}\\[5pt] &= (2x-1)e^x + (x^2-x-1)e^x\\[5pt] &= (x^2+x-2)e^x\,\textrm{.} \end{align}
This expression for the derivative can only be zero when \displaystyle x^2+x-2=0, because \displaystyle e^x differs from zero for all values of \displaystyle x. We solve the second-degree equation by completing the square,
\displaystyle \begin{align} \Bigl(x+\frac{1}{2}\Bigr)^2 - \Bigl(\frac{1}{2}\Bigr)^2 - 2 &= 0\,,\\[5pt] \Bigl(x+\frac{1}{2}\Bigr)^2 &= \frac{9}{4}\,,\\[5pt] x+\frac{1}{2} &= \pm\frac{3}{2}\,, \end{align}
- The function is a polynomial \displaystyle x^2-x-1 multiplied by the exponential function \displaystyle e^x, and, because both of these functions are differentiable, the product is also a differentiable function, which shows that the function is differentiable everywhere.
- The function's region of definition is \displaystyle -3\le x\le 3 and the endpoints \displaystyle x=-3 and \displaystyle x=3 are therefore possible local extreme points.
All in all, there are four points \displaystyle x=-3, \displaystyle x=-2, \displaystyle x=1 and \displaystyle x=3 where the function possibly has local extreme points.
Now, we will write down a table of the sign of the derivative, in order to investigate if the function has local extreme points.
We can factorize the derivative somewhat,
\displaystyle f^{\,\prime}(x) = (x^2+x-2)e^x = (x+2)(x-1)e^x\,, |
since \displaystyle x^2+x-2 has zeros at \displaystyle x=-2 and \displaystyle x=1. Each individual factor in the derivative has a sign that is given in the table:
\displaystyle x | \displaystyle -3 | \displaystyle -2 | \displaystyle 1 | \displaystyle 3 | |||
\displaystyle x+2 | \displaystyle - | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
\displaystyle x-1 | \displaystyle - | \displaystyle - | \displaystyle - | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + |
\displaystyle e^x | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
The sign of the derivative is the product of these signs and from the derivative's sign we decide which local extreme points we have:
\displaystyle x | \displaystyle -3 | \displaystyle -2 | \displaystyle 1 | \displaystyle 3 | |||
\displaystyle f^{\,\prime}(x) | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle 0 | \displaystyle + | ||
\displaystyle f(x) | \displaystyle 11e^{-3} | \displaystyle \nearrow | \displaystyle 5e^{-2} | \displaystyle \searrow | \displaystyle -e | \displaystyle \nearrow | \displaystyle 5e^3 |
The function has local minimum points at \displaystyle x=-3 and \displaystyle x=1, and local maximum points \displaystyle x=-2 and \displaystyle x=3.