Lösung 3.3:3c

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

If we take the minus sign out in front of the whole expression,


\displaystyle -\left( z^{2}+2iz-4z-1 \right)


and collect together the first-degree terms,


\displaystyle -\left( z^{2}+\left( -4+2i \right)z-1 \right)


we can then complete the square of the expression inside the outer bracket


\displaystyle \begin{align} & -\left( z^{2}+\left( -4+2i \right)z-1 \right)=-\left( \left( z+\frac{-4+2i}{2} \right)^{2}-\left( \frac{-4+2i}{2} \right)^{2}-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-\left( -2+i \right)^{2}-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-\left( -2 \right)^{2}+4i-i^{2}-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-4+4i+1-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-4+4i \right) \\ & =-\left( z-2+i \right)^{2}+4-4i. \\ \end{align}