Lösung 3.3:2e
Aus Online Mathematik Brückenkurs 2
If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation
\displaystyle w^{2}=-1
We know already that this equation has roots
\displaystyle w=\left\{ \begin{array}{*{35}l}
-i \\
i \\
\end{array} \right.
so
\displaystyle z\text{ }
should satisfy one of the equation's
\displaystyle \frac{z+i}{z-i}=-i
or
\displaystyle \frac{z+i}{z-i}=i
We solve these equations one by one.
\displaystyle \underline{\underline{\frac{z+i}{z-i}=-i}}
Multiply both sides by
\displaystyle z-i:
\displaystyle z+i=-i\left( z-i \right)
Move all the
\displaystyle z
-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z+iz=-1-i
This gives
\displaystyle z=\frac{-1-i}{1+i}=\frac{-\left( 1+i \right)}{1+i}=-1
\displaystyle \underline{\underline{\frac{z+i}{z-i}=i}}
Multiply both sides by
\displaystyle z-i:
\displaystyle z+i=i\left( z-i \right)
Move all the z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z-iz=1-i
This gives
\displaystyle z=\frac{1-i}{1-i}=1
The solutions are therefore
\displaystyle z=-\text{1}
and
\displaystyle z=\text{1}.