Lösung 3.1:2c
Aus Online Mathematik Brückenkurs 2
We start by expanding the quadratic in the numerator with the square rule:
\displaystyle \begin{align}\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}}&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\
&=\frac{4-4\sqrt{3}i-3}{1+i\sqrt{3}}\\
&=\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}\end{align}
Then, we multiply top and bottom by the complex conjugate of the numerator:
\displaystyle \begin{align}\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}&=\frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\
&=\frac{1\cdot 1-1\cdot i\sqrt{3}-1\cdot 4\sqrt{3}i+ 4\sqrt{3}i\cdot i \sqrt{3}}{1^2-(i\sqrt{3})^2}\\
&=\frac{1-i\sqrt{3}-4\sqrt{3}i+4(\sqrt{3})^2i^2}{1+(\sqrt{3})^2)}\\
&=\frac{1-(\sqrt{3}+4\sqrt{3})i-4\cdot 3}{1+3}\\
&=\frac{1-12-(1+4)\sqrt{3}i}{4}\\
&=-\frac{11}{4}-\frac{5\sqrt{3}}{4}i.\end{align}