Lösung 2.3:2b
Aus Online Mathematik Brückenkurs 2
We have a product of two factors in the integrand, so a partial integration does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate \displaystyle x^{\text{3}} (so as to reduce its exponent by \displaystyle \text{1}), we need to find a primitive function for \displaystyle e^{x^{2}}, and how do we do that? If, on the other hand, we integrate \displaystyle x^{\text{3}} and differentiate \displaystyle e^{x^{2}}, we get
\displaystyle \begin{align}
& \int{x^{3}e^{x^{2}}\,dx=\frac{x^{4}}{4}}\centerdot e^{x^{2}}-\int{\frac{x^{4}}{4}}\centerdot e^{x^{2}}2x\,dx \\
& =\frac{1}{4}x^{4}e^{x^{2}}-\frac{1}{2}\int{x^{5}e^{x^{2}}\,dx} \\
\end{align}
which just seems to make the integral harder. The solution is instead to substitute \displaystyle u=x^{2}. If we write the integral as
\displaystyle \int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}
we see that the expression
\displaystyle ''x\,dx''
can be replaced by
\displaystyle du
and the rest of the integrand contains only
\displaystyle x
in the form of
\displaystyle x^{\text{2}}. The substitution gives
\displaystyle \begin{align}
& \int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}=\left\{ \begin{matrix}
u=x^{2} \\
du=\left( x^{2} \right)^{\prime }\,dx=2x\,dx \\
\end{matrix} \right\} \\
& =\int\limits_{0}^{1}{ue^{u}\frac{1}{2}\,du}=\frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du} \\
\end{align}
We can then calculate this integral be partial integration, where we differentiate away the factor
\displaystyle u:
\displaystyle \begin{align}
& \frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du}=\frac{1}{2}\left[ ue^{u} \right]_{0}^{1}-\frac{1}{2}\int\limits_{0}^{1}{1\centerdot e^{u}\,du} \\
& =\frac{1}{2}\left( 1\centerdot e^{1}-0 \right)-\frac{1}{2}\left[ e^{u} \right]_{0}^{1} \\
& =\frac{1}{2}e-\frac{1}{2}\left( e^{1}-e^{0} \right) \\
& =\frac{1}{2}e-\frac{1}{2}e+\frac{1}{2}=\frac{1}{2} \\
\end{align}