Lösung 2.2:3c
Aus Online Mathematik Brückenkurs 2
It is simpler to investigate the integral if we write it as
\displaystyle \int{\ln x\centerdot \frac{1}{x}\,dx},
The derivative of \displaystyle \ln x is \displaystyle \frac{1}{x}, so if we choose \displaystyle u=\ln x, the integral can be expressed as
\displaystyle \int{u\centerdot {u}'\,dx}
Thus, it seems that
\displaystyle u=\ln x
is a useful substitution,
\displaystyle \begin{align}
& \int{\ln x\centerdot \frac{1}{x}\,dx}=\left\{ \begin{matrix}
u=\ln x \\
du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx \\
\end{matrix} \right\} \\
& =\int{u\,du=\frac{1}{2}u^{2}+C} \\
& =\frac{1}{2}\left( \ln x \right)^{2}+C \\
\end{align}