Lösung 2.1:3c
Aus Online Mathematik Brückenkurs 2
If we multiply the factors in the integrand together and use the power laws,
\displaystyle \begin{align}
& \int{e^{2x}}\left( e^{x}+1 \right)\,dx=\int{\left( e^{2x}e^{x}+e^{2x} \right)}\,dx \\
& =\int{\left( e^{2x+x}+e^{2x} \right)}\,dx=\int{\left( e^{3x}+e^{2x} \right)}\,dx \\
\end{align}
we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore
\displaystyle \int{\left( e^{3x}+e^{2x} \right)}\,dx=\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C
where \displaystyle C is an arbitrary constant.