1.2 Ableitungsregeln

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Inhalt:

  • Die Ableitung eines Produktes und eines Bruches
  • Die Ableitung verketteter Funktionen
  • Höhere Ableitungen

Lernziele:

Nach diesem Abschnitt solltest Du folgendes wissen:

  • Wie man prinzipiell jede Funktion, die aus Elementarfunktionen besteht, ableitet.

A - Die Produkt- und Quotientenregel

Mittels der Definition der Ableitung können wir Ableitungsregeln für Produkte und Quotienten von Funktionen herleiten:

Faktor- und Quotientenregel:

\displaystyle \begin{align*} \frac{d}{dx}\,\bigl(\,f(x) \, g(x) \bigr) &= f^{\,\prime}(x) \, g(x) + f(x) \, g'(x)\\[4pt] \frac{d}{dx}\,\Bigl( \frac{f(x)}{g(x)} \Bigr) &= \frac{f^{\,\prime}(x)\, g(x) - f(x)\, g'(x)}{\bigl(g(x)\bigr)^2} \end{align*}

Beispiel 1

  1. \displaystyle \frac{d}{dx}\,(x^2 e^x) = 2x\, e^x + x^2\, e^x = (2x +x^2)\,e^x\,.
  2. \displaystyle \frac{d}{dx}\,(x \sin x) = 1\cdot \sin x + x\,\cos x = \sin x + x \cos x\,.
  3. \displaystyle \frac{d}{dx}\,(x \ln x -x) = 1 \cdot \ln x + x\, \frac{1}{x} - 1 = \ln x + 1 -1 = \ln x\,.
  4. \displaystyle \frac{d}{dx}\,\tan x = \frac{d}{dx}\,\frac{\sin x}{\cos x} = \frac{ \cos x \, \cos x - \sin x \, (-\sin x)}{(\cos x)^2} \vphantom{\biggl(}
    \displaystyle \phantom{\frac{d}{dx}\,\tan x}{} = \frac{\cos^2 x + \sin^2 x }{ \cos^2 x} = \frac{1}{\cos^2 x}\,.
  5. \displaystyle \frac{d}{dx}\,\frac{1+x}{\sqrt{x}} = \frac{\displaystyle 1 \cdot \sqrt{x} - (1+x) \, \frac{1}{2\sqrt{x}}}{(\sqrt{x}\,)^2} = \frac{\displaystyle\frac{2x}{2\sqrt{x}} - \frac{1}{2\sqrt{x}} - \frac{x}{2\sqrt{x}}}{x} \vphantom{\biggl(}
    \displaystyle \phantom{\frac{d}{dx}\,\frac{1+x}{\sqrt{x}}}{} = \frac {\displaystyle \frac {x-1}{2\sqrt{x}}}{x} = \frac{x-1}{2x\sqrt{x}}\,.
  6. \displaystyle \frac{d}{dx}\,\frac{x\,e^x}{1+x} = \frac{(1\cdot e^x + x\, e^x)(1+x) - x\,e^x \cdot 1}{(1+x)^2} \vphantom{\Biggl(}
    \displaystyle \phantom{\frac{d}{dx}\,\frac{x\,e^x}{1+x}}{} = \frac{ e^x + x\,e^x + x\,e^x + x^2\,e^x - x\,e^x}{(1+x)^2} = \frac{(1 + x + x^2)\,e^x} {(1+x)^2}\,.


B - Ableitung von verketteten Funktionen

Eine Funktion \displaystyle y=f(g), wo auch die Variable g selbst eine Funktion von x ist, nennt man eine verkettete Funktion. Die Funktion ist also \displaystyle y=f \bigl( g(x)\bigr). Um eine verkettete Funktion abzuleiten, verwendet man die Kettenregel.

\displaystyle y'(x) = f^{\,\prime}\bigl( g(x) \bigr)

\, g'(x)\,\mbox{.}

Nennen wir \displaystyle y=f(u) und \displaystyle u=g(x), wird die Kettenregel

\displaystyle \frac{dy}{dx}

= \frac{dy}{du} \, \frac{du}{dx}\,\mbox{.}

Man sagt, dass die verkettete Funktion y aus einer äußeren Funktion f und einer inneren Funktion g besteht. Analog nennt man \displaystyle f^{\,\prime} die äußere Ableitung und \displaystyle g' die innere Ableitung.


Beispiel 2

In der Funktion \displaystyle y=(x^2 + 2x)^4 ist

\displaystyle y=u^4 die äußere Funktion und \displaystyle u=x^2+2x die innere Funktion.
\displaystyle \dfrac{dy}{du}=4u^3 die äußere Ableitung und \displaystyle \dfrac{du}{dx}=2x+2 die innere Ableitung.

Die Ableitung der Funktion y in Bezug auf x ist durch die Kettenregel gegeben

\displaystyle \frac{dy}{dx} = \frac{dy}{du} \, \frac{du}{dx}

= 4 u^3 \, (2x +2) = 4(x^2 + 2x)^3 \, (2x +2)\,\mbox{.}

Wenn man mit verketteten Funktionen rechnet, benennt man die äußere und innere Ableitung meist nicht mit neuen Funktionen, sondern man sagt einfach

\displaystyle (\text{Äußere Ableitung})

\, (\text{Innere Ableitung})\,\mbox{.}

Vergessen Sie nicht, die Produkt-und Quotientenregeln falls notwendig anzuwenden.

Beispiel 3

  1. \displaystyle f(x) = \sin (3x^2 + 1)

    \displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & \cos (3x^2 +1)\\ \text{Innere Ableitung:} & 6x \end{array}

    \displaystyle f^{\,\prime}(x) = \cos (3x^2 + 1) \cdot 6x = 6x \cos (3x^2 +1)
  2. \displaystyle y = 5 \, e^{x^2}

    \displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & 5\,e^{x^2}\\ \text{Innere Ableitung:} & 2x \end{array}

    \displaystyle y' = 5 \, e^{x^2} \, 2x = 10x\, e^{x^2}
  3. \displaystyle f(x) = e^{x\, \sin x}

    \displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & e^{x\, \sin x}\\ \text{Innere Ableitung:} & 1\cdot \sin x + x \cos x \end{array}

    \displaystyle f^{\,\prime}(x) = e^{x\, \sin x} (\sin x + x \cos x)
  4. \displaystyle s(t) = t^2 \cos (\ln t)

    \displaystyle s'(t) = 2t \, \cos (\ln t) + t^2 \,\Bigl(-\sin (\ln t) \,\frac{1}{t}\Bigr) = 2t \cos (\ln t) - t \sin (\ln t)
  5. \displaystyle \frac{d}{dx}\,a^x = \frac{d}{dx}\,\bigl( e^{\ln a} \bigr)^x = \frac{d}{dx}\,e^{x\ln a} = e^{x\ln a} \, \ln a = a^x \, \ln a
  6. \displaystyle \frac{d}{dx}\,x^a = \frac{d}{dx}\,\bigl( e^{\ln x} \bigr)^a = \frac{d}{dx}\,e^{ a \, \ln x } = e^{a \, \ln x} \cdot a \, \frac{1}{x} = x^a \cdot a \, x^{-1} = ax^{a-1}

Die Kettenregel kann mehrmals angewendet werden, um mehrfach verkettete Funktionen abzuleiten. Zum Beispiel hat die Funktion \displaystyle y= f \bigl( g(h(x))\bigr) die Ableitung


\displaystyle y'= f^{\,\prime} \bigl ( g(h(x))\bigr)

\, g'(h(x)) \, h'(x)\,\mbox{.}


Beispiel 4

  1. \displaystyle \frac{d}{dx}\,\sin^3 2x = \frac{d}{dx}\,(\sin 2x)^3 = 3(\sin 2x)^2 \, \frac{d}{dx}\,\sin 2x = 3(\sin 2x)^2 \, \cos 2x \, \frac{d}{dx}\,(2x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^3 2x}{}= 3 \sin^2 2x\,\cos 2x\cdot 2 = 6 \sin^2 2x\,\cos 2x
  2. \displaystyle \frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr) = \cos \bigl((x^2 -3x)^4\bigr) \, \frac{d}{dx}\,(x^2 -3x)^4 \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\cdot 4 (x^2 -3x)^3 \, \frac{d}{dx}\,(x^2-3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\cdot 4 (x^2 -3x)^3 \, (2x-3)
  3. \displaystyle \frac{d}{dx}\,\sin^4 (x^2 -3x) = \frac{d}{dx}\,\bigl( \sin (x^2 -3x) \bigr)^4 \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \, \frac{d}{dx}\,\sin(x^2-3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x) \, \frac{d}{dx}(x^2 -3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x)\, (2x-3)
  4. \displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr) = e^{\sqrt{x^3-1}} \, \frac{d}{dx}\,\sqrt{x^3-1} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \, \frac{d}{dx}\,(x^3-1) \vphantom{\Biggl(}
    \displaystyle \phantom{\displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr)}{} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \cdot 3 x^2 = \frac { 3 x^2 e^{\sqrt{x^3-1}}} {2 \sqrt{x^3-1}} \vphantom{\dfrac{\dfrac{()^2}{()}}{()}}


C - Höhere Ableitungen

Falls eine Funktion mehrmals differenzierbar ist, kann man auch höhere Ableitungen berechnen, indem man die Funktion mehrmals ableitet.

Die zweite Ableitung schreibt man meistens \displaystyle f^{\,\prime\prime}, während man die dritte Ableitung als \displaystyle f^{\,(3)} schreibt, die vierte als \displaystyle f^{\,(4)} etc.

Mann kann auch \displaystyle D^2 f, \displaystyle D^3 f oder \displaystyle \frac{d^2 y}{dx^2}, \displaystyle \frac{d^3 y}{dx^3}, \displaystyle \ldots schreiben.

Beispiel 5

  1. \displaystyle f(x) = 3\,e^{x^2 -1}
    \displaystyle f^{\,\prime}(x) = 3\,e^{x^2 -1} \, \frac{d}{dx}\,(x^2-1) = 3\,e^{x^2 -1} \cdot 2x = 6x\,e^{x^2 -1}\vphantom{\biggl(}
    \displaystyle f^{\,\prime\prime}(x) = 6\,e^{x^2 -1} + 6x\,e^{x^2 -1} \cdot 2x = 6\,e^{x^2 -1}\,(1+ 2x^2)
  2. \displaystyle y = \sin x\,\cos x
    \displaystyle \frac{dy}{dx} = \cos x\,\cos x + \sin x\,(- \sin x) = \cos^2 x - \sin^2 x\vphantom{\Biggl(}
    \displaystyle \frac{d^2 y}{dx^2} = 2 \cos x\,(-\sin x) - 2 \sin x \cos x = -4 \sin x \cos x
  3. \displaystyle \frac{d}{dx}\,( e^x \sin x) = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x) \vphantom{\Bigl(}
    \displaystyle \frac{d^2}{dx^2}(e^x\sin x) = \frac{d}{dx}\,\bigl(e^x (\sin x + \cos x)\bigr) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^2}{dx^2}(e^x\sin x)}{} = e^x (\sin x + \cos x) + e^x (\cos x - \sin x) = 2\,e^x \cos x \vphantom{\biggl(}
    \displaystyle \frac{d^3}{dx^3} ( e^x \sin x) = \frac{d}{dx}\,(2\,e^x \cos x) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^3}{dx^3} ( e^x \sin x)}{} = 2\,e^x \cos x + 2\,e^x (-\sin x) = 2\,e^x ( \cos x - \sin x )