Lösung 1.3:2d

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Lokale Extrempunkte einer Funktion sind entweder:

  1. stationäre Punkte, mit \displaystyle f^{\,\prime}(x)=0,
  2. Singuläre Punkte, in denen die Funktion nicht differenzierbarbar ist, oder
  3. Endpunkte.

Nachdem die Funktion ein Polynom ist, ist sie überall definiert und überall differenzierbar. Es gibt also keine Extrempunkte, die die Bedienungen 2 und 3 erfüllen.

Die Ableitung ist

\displaystyle f^{\,\prime}(x) = 3x^2 - 18x + 30 = 3(x^2-6x+10)

und wir erhalten die Gleichung

\displaystyle x^{2}-6x+10=0\,\textrm{.}
Quadratische Ergänzung ergibt
\displaystyle (x-3)^2 - 3^2 + 10 = 0\,,

also

\displaystyle (x-3)^2 + 1 = 0\,\textrm{.}

Diese Gleichung hat kein Lösung, also hat die Funktion keine lokalen Extrempunkte. Bei der Ableitung

\displaystyle f^{\,\prime}(x) = 3((x-3)^2+1)

sehen wir, dass sie immer größer als null ist, also ist die Funktion streng monoton steigend. Wir berechnen einige Funktionswerte, um die Funktion zu zeichnen.