Lösung 3.3:6
Aus Online Mathematik Brückenkurs 2
Polar form
Wir lösen die Gleichung zuerst in Polarform,
\displaystyle \begin{align}
z &= r\,(\cos\alpha + i\sin\alpha)\,,\\[5pt] 1+i &= \sqrt{2}\Bigl(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\Bigr)\,, \end{align} |
und durch den Moivrischen Satz erhalten wir die Gleichung
\displaystyle r^2(\cos 2\alpha + i\sin 2\alpha) = \sqrt{2}\Bigl(\cos \frac{\pi}{4} + i\sin\frac{\pi}{4}\Bigr)\,\textrm{.} |
Damit die beiden Seiten gleich sein sollen. müssen die Beträge der beiden Seiten gleich sein und die Argumente der beiden Seiten dürfen sich nur mit einen Multipel von \displaystyle 2\pi unterscheiden,
\displaystyle \left\{\begin{align}
r^2 &= \sqrt{2}\,,\\[5pt] 2\alpha &= \frac{\pi}{4}+2n\pi\,,\quad\text{(n is an arbitrary integer).} \end{align}\right. |
Dies ergibt
\displaystyle \left\{\begin{align}
r &= \sqrt{\sqrt{2}} = \bigl(2^{1/2}\bigr)^{1/2} = 2^{1/4} = \sqrt[4]{2}\,,\\[5pt] \alpha &= \frac{\pi}{8}+n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align}\right. |
Dies entspricht zwei Lösungen, nachdem alle geraden Zahlen das Argument \displaystyle \pi/8 entsprechen, plus einen Multipel von \displaystyle 2\pi, und alle ungerade Zahlen das Argument \displaystyle 9\pi/8 entsprechen, plus einen Multipel von \displaystyle 2\pi.
In Polarform lauten die Lösungen also
\displaystyle z = \left\{\begin{align}
&\sqrt[4]{2}\Bigl(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\Bigr)\,,\\[5pt] &\sqrt[4]{2}\Bigl(\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}\Bigr)\,\textrm{.} \end{align}\right. |
Eine Lösung, \displaystyle z=\sqrt[4]{2}(\cos (\pi/8) + i\sin (\pi/8) liegt im ersten Quadrant, und die zweite Lösung, \displaystyle z=\sqrt[4]{2}(\cos (9\pi/8) + i\sin (9\pi/8)) liegt im dritten Quadrant.
Auf der Form a + bi
Wir schreiben hier \displaystyle z=x+iy und versuchen die Konstanten \displaystyle x und \displaystyle y zu bestimmen.
Mit \displaystyle z=x+iy, erhalten wir die Gleichung
\displaystyle \begin{align}
(x+iy)^2 &= 1+i\,,\\[5pt] x^2-y^2+2xyi &= 1+i\,\textrm{.} \end{align} |
Nachdem der Real- und Imaginärteil der beiden Seiten gleich sein muss, erhalten wir
\displaystyle \left\{\begin{align}
x^2 - y^2 &= 1\,,\\[5pt] 2xy &= 1\,\textrm{.} \end{align}\right. |
Wir können hier \displaystyle x und \displaystyle y direkt bestimmen, aber um es einfacher zu machen, berechnen wir den Betrag von beiden Seiten,
\displaystyle x^2 + y^2 = \sqrt{1^2+1^2} = \sqrt{2}\,\textrm{.} |
und wir erhalten insgesamt dre Gleihungen,
\displaystyle \left\{\begin{align}
x^2 -y^2 &= 1\,,\\[5pt] 2xy &= 1\,,\\[5pt] x^2 + y^2 &= \sqrt{2}\,\textrm{.} \end{align}\right. |
Addieren wir die erste Gleichung zur dritten erhalten wir
\displaystyle x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle 1 | |
\displaystyle +\ \ | \displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \sqrt{2} |
\displaystyle 2x^2 | \displaystyle {}={} | \displaystyle \sqrt{2}+1 |
und wir erhalten;
\displaystyle x=\pm \sqrt{\frac{\sqrt{2}+1}{2}}\,\textrm{.} |
Subtrahieren wir die erste Gleichung von der dritten erhalten wir,
\displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \sqrt{2} | |
\displaystyle -\ \ | \displaystyle \bigl(x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle 1\bigr) |
\displaystyle 2y^2 | \displaystyle {}={} | \displaystyle \sqrt{2}-1 |
und wir erhalten;
\displaystyle y=\pm \sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} |
Insgesamt haben wir also vier mögliche Lösungen
\displaystyle \left\{\begin{align}
x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align} \right. |
Die zweite Gleichung sagt dass \displaystyle xy positiv sein soll, und wir behalten daher nur die Gleichungen
\displaystyle \left\{\begin{align}
x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. |
Nachdem wir wissen dass unsere Gleichung zwei Lösungen hat, müssen dies unsere Lösungen sein:
\displaystyle z = \left\{\begin{align}
\sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}\,,\\[5pt] -\sqrt{\frac{\sqrt{2}+1}{2}} - i\sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} \end{align}\right. |
Vergleichen wir diese Lösungen mit den Lösungen in Polarform, erhalten wir
\displaystyle \sqrt[4]{2}\Bigl(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \Bigr) = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}} |
und daher ist
\displaystyle \begin{align}
\cos\frac{\pi}{8} &= \frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}}\,,\\[5pt] \sin\frac{\pi}{8} &= \frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} \end{align} |
und wir erhalten auch
\displaystyle \tan\frac{\pi}{8} = \frac{\sin\dfrac{\pi}{8}}{\cos\dfrac{\pi}{8}} = \frac{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}-1}{2}}}{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}+1}{2}}} = \sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\,\textrm{.} |
Wir können diesen Ausdruck vereinfachen, indem wir den Ausdruck mit den konjugieren Nenner erweitern,
\displaystyle \begin{align}
\tan\frac{\pi}{8} &= \sqrt{\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}} = \sqrt{\frac{(\sqrt{2}-1)^2}{(\sqrt{2})^2-1^2}}\\[5pt] &= \sqrt{\frac{(\sqrt{2}-1)^2}{2-1}} = \sqrt{(\sqrt{2}-1)^2} = \sqrt{2}-1\,\textrm{.} \end{align} |