Lösung 1.1:2e
Aus Online Mathematik Brückenkurs 2
Wir erweitern die Quadrate und erhalten
\displaystyle \begin{align}
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] &= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] &= x^4 - 2x^2 + 1\,\textrm{.} \end{align} |
Jetzt Können wir die Funktion Term für Term ableiten,
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] &= 4\cdot x^{4-1} - 2\cdot 2x^{2-1} + 0\\[5pt] &= 4x^{3} - 4x\\[5pt] &= 4x(x^2-1)\,\textrm{.} \end{align} |