Lösung 3.3:5d
Aus Online Mathematik Brückenkurs 2
Let us first divide both sides by \displaystyle 4+i, so that the coefficient in front of \displaystyle z^2 becomes \displaystyle 1,
\displaystyle z^2 + \frac{1-21i}{4+i}z = \frac{17}{4+i}\,\textrm{.} |
The two complex quotients become
\displaystyle \begin{align}
\frac{1-21i}{4+i} &= \frac{(1-21i)(4-i)}{(4+i)(4-i)} = \frac{4-i-84i+21i^2}{4^2-i^2}\\[5pt] &= \frac{-17-85i}{16+1} = \frac{-17-85i}{17} = -1-5i\,,\\[10pt] \frac{17}{4+i} &= \frac{17(4-i)}{(4+i)(4-i)} = \frac{17(4-i)}{4^2-i^2}\\[5pt] &= \frac{17(4-i)}{17} = 4-i\,\textrm{.} \end{align} |
Thus, the equation becomes
\displaystyle z^2 - (1+5i)z = 4-i\,\textrm{.} |
Now, we complete the square of the left-hand side,
\displaystyle \begin{align}
\Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1+5i}{2}\Bigr)^2 &= 4-i\,,\\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1}{4}+\frac{5}{2}\,i+\frac{25}{4}i^2 \Bigr) &= 4-i\,,\\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \frac{1}{4} - \frac{5}{2}i + \frac{25}{4} &= 4-i\,, \\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 &= -2+\frac{3}{2}\,i\,\textrm{.} \end{align} |
If we set \displaystyle w=z-\frac{1+5i}{2}, we have a binomial equation in \displaystyle w,
\displaystyle w^2 = -2+\frac{3}{2}\,i |
which we solve by putting \displaystyle w=x+iy,
\displaystyle (x+iy)^2 = -2+\frac{3}{2}\,i |
or, if the left-hand side is expanded,
\displaystyle x^2-y^2+2xyi = -2+\frac{3}{2}\,i\,\textrm{.} |
If we identify the real and imaginary parts on both sides, we get
\displaystyle \begin{align}
x^2-y^2 &= -2\,,\\[5pt] 2xy &= \frac{3}{2}\,, \end{align} |
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:
\displaystyle x^2 + y^2 = \sqrt{(-2)^2+\bigl(\tfrac{3}{2}\bigr)^2} = \tfrac{5}{2}\,\textrm{.} |
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.
Together, the three relations constitute the following system of equations:
\displaystyle \left\{\begin{align}
x^2-y^2 &= -2\,,\\[5pt] 2xy &= \frac{3}{2}\,,\\[5pt] x^2 + y^2 &= \frac{5}{2}\,\textrm{.} \end{align} \right. |
From the first and the third equations, we can relatively easily obtain the values that \displaystyle x and \displaystyle y can take.
Add the first and third equations,
\displaystyle x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2 | |
\displaystyle +\ \ | \displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} |
\displaystyle 2x^2 | \displaystyle {}={} | \displaystyle \tfrac{1}{2} |
which gives that \displaystyle x=\pm \tfrac{1}{2}.
Then, subtract the first equation from the third equation,
\displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} | |
\displaystyle -\ \ | \displaystyle \bigl(x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2\rlap{\bigr)} |
\displaystyle 2y^2 | \displaystyle {}={} | \displaystyle \tfrac{9}{2} |
i.e. \displaystyle y=\pm\tfrac{3}{2}.
This gives four possible combinations,
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= \tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align} \right. |
of which only two also satisfy the second equation.
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. |
This means that the binomial equation has the two solutions,
\displaystyle w=\frac{1}{2}+\frac{3}{2}\,i\qquad and \displaystyle \qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,, |
and that the original equation has the solutions
\displaystyle z=1+4i\qquad and \displaystyle \qquad z=i |
according to the relation \displaystyle w=z-\frac{1+5i}{2}.
Finally, we check that the solutions really do satisfy the equation.
\displaystyle \begin{align} z=1+4i:\quad (4+i)z^2+(1-21i)z &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] &= (4+i)(-15+8i)+1-17i+84\\[5pt] &= -60+32i-15i+8i^2+1-17i+84\\[5pt] &= -60+32i-15i-8+1-17i+84\\[5pt] &= 17\,,\\[10pt] z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z &= (4+i)i^2 + (1-21i)i\\[5pt] &= (4+i)(-1)+i-21i^2\\[5pt] &= -4-i+i+21\\[5pt] &= 17\,\textrm{.} \end{align}