Lösung 1.2:2b

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

The whole expression consists of two parts: the outer part, "e raised to something",

\displaystyle e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,,

where "something" is the inner part \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x.

The derivative is calculated according to the chain rule by differentiating \displaystyle e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}} with respect to \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} and then multiplying by the inner derivative \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)', i.e.

\displaystyle \frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.}

The inner part is an ordinary polynomial which we differentiate directly,

\displaystyle \frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.}