Lösung 3.3:4a
Aus Online Mathematik Brückenkurs 2
This is a typical binomial equation which we solve in polar form.
We write
\displaystyle \begin{align}
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
& i=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right) \\
\end{align}
and, on using de Moivre's formula, the equation becomes
\displaystyle r^{2}\left( \cos 2\alpha +i\sin 2\alpha \right)=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)
Both sides are equal when
\displaystyle \left\{ \begin{array}{*{35}l}
r^{2}=1 \\
2\alpha =\frac{\pi }{2}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
which gives that
\displaystyle \left\{ \begin{array}{*{35}l}
r=1 \\
\alpha =\frac{\pi }{4}+n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
When
\displaystyle n=0
and
\displaystyle n=\text{1}, we get two different arguments for
\displaystyle \alpha , whilst different values of
\displaystyle n
only give these arguments plus/minus a multiple of
\displaystyle 2\pi .
The solutions to the equation are
\displaystyle z=\left\{ \begin{array}{*{35}l}
\ 1\centerdot \left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\
\ 1\centerdot \left( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right) \\
\end{array} \right.=\left\{ \begin{array}{*{35}l}
\ \frac{1+i}{\sqrt{2}} \\
\ -\frac{1+i}{\sqrt{2}} \\
\end{array} \right.