Lösung 3.3:2a
Aus Online Mathematik Brückenkurs 2
An equation of the type “ \displaystyle z^{n} = a complex number” is called a binomial equation and these are usually solved by going over to polar form and using de Moivre's formula.
We start by writing \displaystyle z\text{ } and \displaystyle \text{1} in polar form
\displaystyle \begin{align}
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
& 1=1\left( \cos 0+i\sin 0 \right) \\
\end{align}
The equation then becomes
\displaystyle r^{4}\left( \cos 4\alpha +i\sin 4\alpha \right)=1\left( \cos 0+i\sin 0 \right)
where we have used de Moivre's formula on the left-hand side. In order that both sides are equal, they must have the same magnitude and the same argument to within a multiple of
\displaystyle 2\pi , i.e.
\displaystyle \left\{ \begin{array}{*{35}l}
r^{4}=1 \\
4\alpha =0+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
This means that
\displaystyle \left\{ \begin{array}{*{35}l}
r=1 \\
\alpha =\frac{n\pi }{2}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
The solutions are thus (in polar form)
\displaystyle z=1\centerdot \left( \cos \frac{n\pi }{2}+i\sin \frac{n\pi }{2} \right), for
\displaystyle n=0,\ \pm 1,\ \pm 2,...
but observe that the argument on the right-hand side essentially takes only four different values
\displaystyle 0,\ {\pi }/{2}\;,\ \pi
and
\displaystyle {3\pi }/{2}\;, because other values of
\displaystyle n\text{ }
give some of these values plus/minus a multiple of
\displaystyle 2\pi .
The equation's solutions are therefore
\displaystyle z=\left\{ \begin{array}{*{35}l}
1\centerdot \left( \cos 0+i\sin 0 \right) \\
1\centerdot \left( \cos {\pi }/{2}\;+i\sin {\pi }/{2}\; \right) \\
1\centerdot \left( \cos \pi +i\sin \pi \right) \\
1\centerdot \left( \cos {3\pi }/{2}\;+i\sin {3\pi }/{2}\; \right) \\
\end{array} \right.=\left\{ \begin{matrix}
1 \\
i \\
-1 \\
-i \\
\end{matrix} \right.
NOTE: note that if we mark these solutions on the complex number plane, we see that they are corners in a regular quadrilateral.