Lösung 3.3:1c
Aus Online Mathematik Brückenkurs 2
The calculation follows a fairly set pattern. We write the number \displaystyle 4\sqrt{3}-4i in polar form and then use de Moivre's formula.
This gives
\displaystyle 4\sqrt{3}-4i=8\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right)
and then we get, on using de Moivre's formula,
\displaystyle \begin{align}
& \left( 4\sqrt{3}-4i \right)^{22}=8^{22}\left( \cos \left( 22\centerdot \left( -\frac{\pi }{6} \right) \right)+i\sin \left( 22\centerdot \left( -\frac{\pi }{6} \right) \right) \right) \\
& =\left( 2^{3} \right)^{22}\left( \cos \left( -\frac{11\pi }{3} \right)+i\sin \left( -\frac{11\pi }{3} \right) \right) \\
& =2^{3\centerdot 22}\left( \cos \left( -\frac{12\pi -\pi }{3} \right)+i\sin \left( -\frac{12\pi -\pi }{3} \right) \right) \\
& =2^{66}\left( \cos \left( -4\pi +\frac{\pi }{3} \right)+i\sin \left( -4\pi +\frac{\pi }{3} \right) \right) \\
& =2^{66}\left( \cos \left( \frac{\pi }{3} \right)+i\sin \left( \frac{\pi }{3} \right) \right) \\
& =2^{66}\left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)=2^{65}\left( 1+i\sqrt{3} \right) \\
\end{align}