Lösung 2.2:3a
Aus Online Mathematik Brückenkurs 2
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
\displaystyle \int{\left( \begin{matrix}
\text{an}\quad \text{expression} \\
\text{in}\quad u \\
\end{matrix} \right)}\centerdot {u}'\,dx,
where \displaystyle u=u\left( x \right) is the actual substitution. In the integral
\displaystyle \int{2x\sin x^{2}\,dx}
we see that the expression
\displaystyle x^{2}
is the argument for the sine function, as the same time as its derivative
\displaystyle \left( x^{2} \right)^{\prime }=2x
stands as a factor in front of sine. Therefore, if we set
\displaystyle u=x^{2}, the integral, the integral will be of the form
\displaystyle \int{{u}'\sin u\,dx}
Thus, we can use
\displaystyle u=x^{2}
for the substitution:
\displaystyle \begin{align}
& \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix}
u=x^{2} \\
du=2x\,dx \\
\end{matrix} \right\}=\int{\sin u\,du} \\
& =-\cos u+C=-\cos x^{2}+C \\
\end{align}