3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[3.4 Komplexa polynom|Teori]]}}
+
{{Ej vald flik|[[3.4 Komplexa polynom|Theory]]}}
-
{{Vald flik|[[3.4 Övningar|Övningar]]}}
+
{{Vald flik|[[3.4 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 3.4:1===
+
===Exercise 3.4:1===
<div class="ovning">
<div class="ovning">
-
Utför följande polynomdivisioner (alla går inte jämnt ut)
+
Carry out the following division:(not all are exact, i.e. have no remainder)
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 25: Zeile 25:
</div>{{#NAVCONTENT:Svar|Svar 3.4:1|Lösning a|Lösning 3.4:1a|Lösning b|Lösning 3.4:1b|Lösning c|Lösning 3.4:1c|Lösning d|Lösning 3.4:1d|Lösning e|Lösning 3.4:1e}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:1|Lösning a|Lösning 3.4:1a|Lösning b|Lösning 3.4:1b|Lösning c|Lösning 3.4:1c|Lösning d|Lösning 3.4:1d|Lösning e|Lösning 3.4:1e}}
-
===Övning 3.4:2===
+
===Exercise 3.4:2===
<div class="ovning">
<div class="ovning">
-
Ekvationen <math>\,z^3-3z^2+4z-2=0\,</math> har roten <math>\,z=1\,</math>. Bestäm övriga rötter.
+
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots.
</div>{{#NAVCONTENT:Svar|Svar 3.4:2|Lösning |Lösning 3.4:2}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:2|Lösning |Lösning 3.4:2}}
-
===Övning 3.4:3===
+
===Exercise 3.4:3===
<div class="ovning">
<div class="ovning">
-
Ekvationen <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> har rötterna <math>\,z=2i\,</math> och <math>\,z=-1-i\,</math>. Lös ekvationen.
+
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation.
 +
 
 +
 
</div>{{#NAVCONTENT:Svar|Svar 3.4:3|Lösning |Lösning 3.4:3}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:3|Lösning |Lösning 3.4:3}}
-
===Övning 3.4:4===
+
===Exercise 3.4:4===
<div class="ovning">
<div class="ovning">
-
Bestäm två reella tal <math>\,a\,</math> och <math>\,b\,</math> så att ekvationen <math>\ z^3+az+b=0\ </math> har roten <math>\,z=1-2i\,</math>. Lös sedan ekvationen.
+
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math> , such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation.
 +
 
 +
 
</div>{{#NAVCONTENT:Svar|Svar 3.4:4|Lösning |Lösning 3.4:4}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:4|Lösning |Lösning 3.4:4}}
-
===Övning 3.4:5===
+
===Exercise 3.4:5===
<div class="ovning">
<div class="ovning">
-
Bestäm <math>\,a\,</math> och <math>\,b\,</math> så att ekvationen <math>\ z^4-6z^2+az+b=0\ </math> har en trippelrot. Lös sedan ekvationen.
+
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation.
</div>{{#NAVCONTENT:Svar|Svar 3.4:5|Lösning |Lösning 3.4:5}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:5|Lösning |Lösning 3.4:5}}
-
===Övning 3.4:6===
+
===Exercise 3.4:6===
<div class="ovning">
<div class="ovning">
-
Ekvationen <math>\ z^4+3z^3+z^2+18z-30=0\ </math> har en rent imaginär rot. Bestäm alla rötter.
+
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots.
</div>{{#NAVCONTENT:Svar|Svar 3.4:6|Lösning |Lösning 3.4:6}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:6|Lösning |Lösning 3.4:6}}
-
===Övning 3.4:7===
+
===Exercise 3.4:7===
<div class="ovning">
<div class="ovning">
-
Bestäm polynom som har följande nollställen
+
Determine the polynomial which has the following zeros
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%"|<math>1\,</math>, <math>\,2\,</math> och <math>\,4</math>
+
|width="50%"|<math>1\,</math>, <math>\,2\,</math> and <math>\,4</math>
|b)
|b)
-
|width="50%"| <math>-1+ i\,</math> och <math>\,-1-i</math>
+
|width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math>
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 3.4:7|Lösning a|Lösning 3.4:7a|Lösning b|Lösning 3.4:7b}}
</div>{{#NAVCONTENT:Svar|Svar 3.4:7|Lösning a|Lösning 3.4:7a|Lösning b|Lösning 3.4:7b}}

Version vom 12:46, 4. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 3.4:1

Carry out the following division:(not all are exact, i.e. have no remainder)

a) \displaystyle \displaystyle\frac{x^2-1}{x-1} b) \displaystyle \displaystyle\frac{x^2}{x+1} c) \displaystyle \displaystyle \frac{x^3+a^3}{x+a}
d) \displaystyle \displaystyle\frac{x^3 +x+2}{x+1} e) \displaystyle \displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}

Exercise 3.4:2

The equation \displaystyle \,z^3-3z^2+4z-2=0\, has the root \displaystyle \,z=1\,. Determine the other roots.

Exercise 3.4:3

The equation \displaystyle \,z^4+2z^3+6z^2 +8z +8 =0\, has the roots \displaystyle \,z=2i\, and \displaystyle \,z=-1-i\,. Solve the equation.


Exercise 3.4:4

Determine two real numbers \displaystyle \,a\, and \displaystyle \,b\, , such that the equation \displaystyle \ z^3+az+b=0\ has the root \displaystyle \,z=1-2i\,. Then solve the equation.


Exercise 3.4:5

Determine \displaystyle \,a\, and \displaystyle \,b\, so that the equation \displaystyle \ z^4-6z^2+az+b=0\ has a triple root. Then solve the equation.

Exercise 3.4:6

The equation \displaystyle \ z^4+3z^3+z^2+18z-30=0\ has a pure imaginary root. Determine all the roots.

Exercise 3.4:7

Determine the polynomial which has the following zeros

a) \displaystyle 1\,, \displaystyle \,2\, and \displaystyle \,4 b) \displaystyle -1+ i\, and \displaystyle \,-1-i