2.3 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.3 Partiell integrering|Teori]]}}
+
{{Ej vald flik|[[2.3 Partiell integrering|Theory]]}}
-
{{Vald flik|[[2.3 Övningar|Övningar]]}}
+
{{Vald flik|[[2.3 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.3:1===
+
===Exercise 2.3:1===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 23: Zeile 23:
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}}
-
===Övning 2.3:2===
+
===Exercise 2.3:2===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Version vom 10:49, 4. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.3:1

Calculate the integrals

a) \displaystyle \displaystyle\int 2x e^{-x} \, dx b) \displaystyle \displaystyle\int(x+1) \sin x \, dx
c) \displaystyle \displaystyle\int x^2 \cos x \, dx d) \displaystyle \displaystyle\int x \ln x \, dx

Exercise 2.3:2

Calculate the integrals

a) \displaystyle \displaystyle\int e^{\sqrt x}\, dx b) \displaystyle \displaystyle\int_{0}^{1} x^3 e^{x^2} \, dx
c) \displaystyle \displaystyle\int \tan x \, dx d) \displaystyle \displaystyle\int \ln x\, dx