2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.1 Inledning till integraler|Teori]]}}
+
{{Ej vald flik|[[2.1 Inledning till integraler|Theory]]}}
-
{{Vald flik|[[2.1 Övningar|Övningar]]}}
+
{{Vald flik|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.1:1===
+
===Exercise 2.1:1===
<div class="ovning">
<div class="ovning">
-
Tolka integralerna som areor och bestäm deras värde
+
Interpret each integral as an area, and determine its value.
 +
 
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 23: Zeile 24:
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:1b|Lösning c|Lösning 2.1:1c|Lösning d|Lösning 2.1:1d}}
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:1b|Lösning c|Lösning 2.1:1c|Lösning d|Lösning 2.1:1d}}
-
===Övning 2.1:2===
+
===Exercise 2.1:2===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 39: Zeile 40:
</div>{{#NAVCONTENT:Svar|Svar 2.1:2|Lösning a|Lösning 2.1:2a|Lösning b|Lösning 2.1:2b|Lösning c|Lösning 2.1:2c|Lösning d|Lösning 2.1:2d}}
</div>{{#NAVCONTENT:Svar|Svar 2.1:2|Lösning a|Lösning 2.1:2a|Lösning b|Lösning 2.1:2b|Lösning c|Lösning 2.1:2c|Lösning d|Lösning 2.1:2d}}
-
===Övning 2.1:3===
+
===Exercise 2.1:3===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 55: Zeile 56:
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d}}
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d}}
-
===Övning 2.1:4===
+
===Exercise 2.1:4===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%"| Beräkna arean mellan kurvan <math>y=\sin x</math> och <math>x</math>-axeln när <math>0\le x \le \frac{5\pi}{4}</math>.
+
|width="100%"| Calculate the area between the curve <math>y=\sin x</math> and the <math>x</math>-axis when <math>0\le x \le \frac{5\pi}{4}</math>.
|-
|-
|b)
|b)
-
|width="100%"| Beräkna arean av det område under kurvan <math>y=-x^2+2x+2</math> och ovanför <math>x</math>-axeln.
+
|width="100%"| Calculate the area under the curve <math>y=-x^2+2x+2</math> and above the <math>x</math>-axis.
|-
|-
|c)
|c)
-
|width="100%"| Beräkna arean av det ändliga området mellan kurvorna <math>y=\frac{1}{4}x^2+2</math> och <math>y=8-\frac{1}{8}x^2</math> (studentexamen 1965).
+
|width="100%"| Calculate the area of the finite region between the curves <math> y=\frac{1}{4}x^2+2</math> and<math>y=8-\frac{1}{8}x^2</math> (Swedish A-level 1965).
|-
|-
|d)
|d)
-
|width="100%"| Beräkna arean av det ändliga området som kurvorna <math>y=x+2, y=1</math> och <math>y=\frac{1}{x}</math> innesluter.
+
|width="100%"| Calculate the area of the finite region enclosed by the curves <math>y=x+2, y=1</math> and <math>y=\frac{1}{x}</math>.
|-
|-
|e)
|e)
-
|width="100%"| Beräkna arean av området som ges av olikheterna <math>x^2\le y\le x+2</math>.
+
|width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>.
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.1:4|Lösning a|Lösning 2.1:4a|Lösning b|Lösning 2.1:4b|Lösning c|Lösning 2.1:4c|Lösning d|Lösning 2.1:4d|Lösning e|Lösning 2.1:4e}}
</div>{{#NAVCONTENT:Svar|Svar 2.1:4|Lösning a|Lösning 2.1:4a|Lösning b|Lösning 2.1:4b|Lösning c|Lösning 2.1:4c|Lösning d|Lösning 2.1:4d|Lösning e|Lösning 2.1:4e}}
-
===Övning 2.1:5===
+
===Exercise 2.1:5===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integral
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> (Ledning: förläng med nämnarens konjugat)
+
|width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> (HINT: multiply the top and bottom by the conjugate of the denominator)
|-
|-
|b)
|b)
-
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (Ledning: skriv om integranden med en trigonometrisk formel)
+
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (HINT: rewrite the integrand using a trigonometric formula)
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.1:5|Lösning a|Lösning 2.1:5a|Lösning b|Lösning 2.1:5b}}
</div>{{#NAVCONTENT:Svar|Svar 2.1:5|Lösning a|Lösning 2.1:5a|Lösning b|Lösning 2.1:5b}}

Version vom 10:20, 4. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.1:1

Interpret each integral as an area, and determine its value.

a) \displaystyle \displaystyle\int_{-1}^{2} 2\, dx b) \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx
c) \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx d) \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx

Exercise 2.1:2

Calculate the integrals

a) \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx b) \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx
c) \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx d) \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx

Exercise 2.1:3

Calculate the integrals

a) \displaystyle \displaystyle\int \sin x\, dx b) \displaystyle \displaystyle\int 2\sin x \cos x\, dx
c) \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx

Exercise 2.1:4

a) Calculate the area between the curve \displaystyle y=\sin x and the \displaystyle x-axis when \displaystyle 0\le x \le \frac{5\pi}{4}.
b) Calculate the area under the curve \displaystyle y=-x^2+2x+2 and above the \displaystyle x-axis.
c) Calculate the area of the finite region between the curves \displaystyle y=\frac{1}{4}x^2+2 and\displaystyle y=8-\frac{1}{8}x^2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves \displaystyle y=x+2, y=1 and \displaystyle y=\frac{1}{x}.
e) Calculate the area of the region given by the inequality, \displaystyle x^2\le y\le x+2.

Exercise 2.1:5

Calculate the integral

a) \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (HINT: multiply the top and bottom by the conjugate of the denominator)
b) \displaystyle \displaystyle \int \sin^2 x\ dx\quad (HINT: rewrite the integrand using a trigonometric formula)