3.3 Potenzen und Wurzeln
Aus Online Mathematik Brückenkurs 2
K (Regenerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{Vald flik|[[3.3 Potenser | + | {{Vald flik|[[3.3 Potenser and rötter|Theory]]}} |
- | {{Ej vald flik|[[3.3 Övningar| | + | {{Ej vald flik|[[3.3 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content:''' |
- | * De | + | * De Moivre's Theorem |
- | * | + | * Binomial equations |
- | * | + | * exponential function |
- | * Eulers | + | * Eulers formula |
- | * | + | * Completing the square |
- | * | + | * Quadratic equations |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned how to: | |
- | * | + | * Calculate the powers of complex numbers with Moivres Theorem. |
- | * | + | * Calculate the roots of certain complex numbers by rewriting to polar form. |
- | * | + | *Solve binomial equations. |
- | * | + | * Complete the square for complex quadratics expressions. |
- | * | + | * Solve complex quadratic equations. |
}} | }} | ||
- | == De | + | == De Moivre's Theorem== |
- | + | The computational rules <math>\ \arg (zw) = \arg z + \arg w\ </math> and <math>\ |\,zw\,| = |\,z\,|\cdot|\,w\,|\ </math> mean that | |
{{Fristående formel||<math>\biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{osv.}</math>}} | {{Fristående formel||<math>\biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{osv.}</math>}} | ||
- | + | For an arbitrary number <math>z=r\,(\cos \alpha +i\,\sin \alpha)</math>, we therefore have the following relationship | |
{{Fristående formel||<math>z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}</math>}} | {{Fristående formel||<math>z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}</math>}} | ||
- | + | If <math>|\,z\,|=1</math>, (i.e. <math>z</math> lies on the unit circle) then one has the special relationship | |
<div class="regel"> | <div class="regel"> | ||
Zeile 45: | Zeile 45: | ||
</div> | </div> | ||
- | + | which is usually referred to as ''de Moivres Theorem''. This relationship is very useful when it comes to deriving trigonometric identities and calculating the roots and powers of complex numbers. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
- | + | If <math>z = \frac{1+i}{\sqrt2}</math>, determine <math>z^3</math> and <math>z^{100}</math>. | |
- | + | We write <math>z</math> in polar form <math>\ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ </math> and Moivres theorem gives | |
{{Fristående formel||<math>\begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}</math>}} | ||
Zeile 62: | Zeile 62: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
- | + | In the usual way one does an expansion by means of the squaring rules | |
{{Fristående formel||<math>\begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\end{align*}</math>}} | ||
- | + | and according to the Moivres theorem one gets | |
{{Fristående formel||<math>(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}</math>}} | {{Fristående formel||<math>(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}</math>}} | ||
- | + | If one equates the real and imaginary parts of the two expressions one gets the well-known trigonometric formulas | |
+ | |||
{{Fristående formel||<math>\biggl\{\begin{align*}\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\\[2pt] \sin 2v&= 2 \sin v \cos v\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\biggl\{\begin{align*}\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\\[2pt] \sin 2v&= 2 \sin v \cos v\,\mbox{.}\end{align*}</math>}} | ||
Zeile 80: | Zeile 81: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
- | + | Simplify <math>\ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,</math>. | |
- | + | We write the numbers <math>\sqrt{3}+i</math>, <math>1+i\sqrt{3}</math> and <math>1+i</math> in polar form | |
*<math>\quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(}</math>, | *<math>\quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(}</math>, | ||
*<math>\quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(}</math>, | *<math>\quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(}</math>, | ||
*<math>\quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}</math>. | *<math>\quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}</math>. | ||
- | + | Then we get with Moivres Theorem | |
{{Fristående formel||<math>\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \cdot (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}</math>}} | {{Fristående formel||<math>\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \cdot (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}</math>}} | ||
- | + | and this expression can be simplified by performing multiplication and division in polar form | |
{{Fristående formel||<math>\begin{align*}\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\\[8pt] &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*}\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\\[8pt] &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}\end{align*}</math>}} | ||
Zeile 101: | Zeile 102: | ||
- | == | + | == Binomial equations == |
- | + | A complex number <math>z</math> is called the ''n'':th root of the complex number <math>w</math> if | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>z^n= w \mbox{.}</math>}} | {{Fristående formel||<math>z^n= w \mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | The above relationship can also be seen as an equation in which <math>z</math> is unknown. This type of equation is called a ''binomial equation''. The solutions is obtained by rewriting both sides in polar form and comparing both the moduli and the arguments. | |
- | + | ||
- | + | ||
+ | For a given number <math>w=|\,w\,|\,(\cos \theta + i\,\sin \theta)</math> one assumes that <math>z=r\,(\cos \alpha + i\, \sin \alpha)</math> and after insertion, the binomial equation becomes | ||
{{Fristående formel||<math>r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}</math>}} | {{Fristående formel||<math>r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}</math>}} | ||
- | + | where Moivres theorm has been used on the left-hand side. Equating moduli and arguments gives | |
{{Fristående formel||<math>\biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}</math>}} | ||
- | + | Note that we add multiples of <math>2\pi</math> to include all possible values of the argument that have the same direction as <math>\theta</math>. One gets | |
{{Fristående formel||<math>\biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}</math>}} | {{Fristående formel||<math>\biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}</math>}} | ||
- | + | This gives ''one'' value of <math>r</math>, but infinitely many values of <math>\alpha</math>. Despite this, there are not infinitely many solutions. From <math>k = 0</math> to <math>k = n - 1</math> one gets different arguments for <math>z</math> and thus different positions for <math>z</math> in the complex plane. For the other values of <math>k</math> due to the periodicity of the sine and cosine, one returns to these positions and therefore no new solutions are obtained. This reasoning shows that the equation <math>z^n=w</math> has exactly <math>n</math> roots. | |
- | '' | + | ''Comment''. Note that the roots arguments differ from each other by <math>2\pi/n</math> so that the roots are evenly distributed on a circle with radius <math>\sqrt[\scriptstyle n]{|w|}</math> and form corners in a regular ''n-gon'' (an ''n'' sided polygon). |
Zeile 131: | Zeile 131: | ||
- | + | Solve the binomial equation <math>\ z^4= 16\,i\,</math>. | |
- | + | Write <math>z</math> and <math>16\,i</math> in polar form | |
*<math>\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,</math>, | *<math>\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,</math>, | ||
*<math>\quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}</math>. | *<math>\quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}</math>. | ||
- | + | This turns the equation <math>\ z^4=16\,i\ </math> into | |
{{Fristående formel||<math>r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}</math>}} | {{Fristående formel||<math>r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}</math>}} | ||
- | + | Matching the moduli and arguments on both sides gives | |
- | {{Fristående formel||<math>\biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{ | + | {{Fristående formel||<math>\biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{i.e.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}</math>}} |
{| width="100%" | {| width="100%" | ||
| width="95%"| | | width="95%"| | ||
- | + | The solutions to the equation is thus | |
{{Fristående formel||<math>\left\{\begin{align*}\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr),\\[4pt] | {{Fristående formel||<math>\left\{\begin{align*}\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr),\\[4pt] | ||
\displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt] | \displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt] | ||
Zeile 155: | Zeile 155: | ||
||{{:3.3 - Figur - Komplexa talen z₁, z₂, z₃ och z₄}} | ||{{:3.3 - Figur - Komplexa talen z₁, z₂, z₃ och z₄}} | ||
|} | |} | ||
- | |||
</div> | </div> | ||
- | == | + | ==Exponential form of complex numbers == |
- | + | If we manipulate <math>i</math> as if it were a real number and treat a complex number <math>z</math> as a function of just <math>\alpha</math> ( where <math>r</math> is a constant), | |
{{Fristående formel||<math>f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)</math>}} | {{Fristående formel||<math>f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)</math>}} | ||
- | + | we get after differentiation | |
{{Fristående formel||<math>\begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{osv.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{osv.}\end{align*}</math>}} | ||
- | + | The only real functions which behave like this are <math>f(x)= e^{\,kx}</math>, which justifies the definition | |
{{Fristående formel||<math>e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}</math>}} | {{Fristående formel||<math>e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}</math>}} | ||
- | + | This definition turns out to be a completely natural generalisation of the exponential function for the real numbers. Putting <math>z=a+ib</math> one gets | |
{{Fristående formel||<math>e^{\,z} = e^{\,a+ib} = e^{\,a} \cdot e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}</math>}} | {{Fristående formel||<math>e^{\,z} = e^{\,a+ib} = e^{\,a} \cdot e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}</math>}} | ||
- | + | The definition of <math>e^{\,z}</math> may be regarded as a convenient notation for the polar form of a complex number, as <math>z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
- | + | For a real number <math>z</math> the definition is consistent with the case when the exponent is real, as <math>z=a+0\cdot i</math> which gives | |
{{Fristående formel||<math>e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}</math>}} | {{Fristående formel||<math>e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}</math>}} | ||
Zeile 190: | Zeile 189: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
- | + | A further indication of why the above definition is so natural is given by the relationship | |
{{Fristående formel||<math>\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}</math>}} | {{Fristående formel||<math>\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}</math>}} | ||
- | + | which demonstrates that Moivres theorm is actually identical to the well-known law of powers, | |
{{Fristående formel||<math>\left(a^x\right)^y = a^{x\,y}\,\mbox{.}</math>}} | {{Fristående formel||<math>\left(a^x\right)^y = a^{x\,y}\,\mbox{.}</math>}} | ||
Zeile 204: | Zeile 203: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
- | + | From the above definition, one can obtain the relationship | |
{{Fristående formel||<math>e^{\pi\,i} = \cos \pi + i \sin \pi = -1</math>}} | {{Fristående formel||<math>e^{\pi\,i} = \cos \pi + i \sin \pi = -1</math>}} | ||
- | + | which connects together the, generally regarded, most basic numbers in mathematics: <math>e</math>, <math>\pi</math>, <math>i</math> and 1. | |
- | + | This relationship is seen by many as the most beautiful in mathematics and was discovered by Euler in the early 1700's. | |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Solve the equation <math>\ (z+i)^3 = -8i</math>. | |
- | + | Put <math>w = z + i</math>. We then get the binomial equation <math>\ w^3=-8i\,</math>. To begin with, we rewrite <math>w</math> and <math>-8i</math> in polar form | |
*<math>\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}</math> | *<math>\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}</math> | ||
*<math>\quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}</math> | *<math>\quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}</math> | ||
- | + | The equation in polar form is <math>\ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ </math> and matching the moduli and arguments on both sides gives, | |
{{Fristående formel||<math>\biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}</math>}} | ||
- | + | The roots of the equation are thus | |
*<math>\quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}</math> | *<math>\quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}</math> | ||
*<math>\quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}</math> | *<math>\quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}</math> | ||
*<math>\quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}</math> | *<math>\quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}</math> | ||
- | + | i.e. <math>z_1 = 2i-i=i</math>, <math>z_2 = - \sqrt{3}-2i</math> and <math>z_3 = \sqrt{3}-2i</math>. | |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
- | + | Solve <math>\ z^2 = \overline{z}\,</math>. | |
- | + | If for <math>z=a+ib</math> one has <math>|\,z\,|=r</math> and <math>\arg z = \alpha</math> then for <math>\overline{z}= a-ib</math> one gets <math>|\,\overline{z}\,|=r</math> and <math>\arg \overline{z} = - \alpha</math>.This means that <math>z=r\,e^{i\alpha}</math> and <math>\overline{z} = r\,e^{-i\alpha}</math>. The equation can be written | |
- | {{Fristående formel||<math>(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{ | + | {{Fristående formel||<math>(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{or}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{,}</math>}} |
- | + | which directly gives that <math>r=0</math> is a solution, i.e. <math>z=0</math>. If we assume that <math>r\not=0</math> then the equation can be written as <math>\ r\,e^{3i\alpha} = 1\,</math>, which gives after matching moduli and arguments | |
{{Fristående formel||<math>\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}</math>}} | ||
- | + | The solutions are | |
*<math>\quad z_1 = e^0 = 1\,\mbox{,}</math> | *<math>\quad z_1 = e^0 = 1\,\mbox{,}</math> | ||
*<math>\quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}</math> | *<math>\quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}</math> | ||
Zeile 263: | Zeile 262: | ||
- | == | + | == Completing the square == |
- | + | The squaring rules, | |
{{Fristående formel||<math>\left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.</math>}} | {{Fristående formel||<math>\left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.</math>}} | ||
- | + | which are usually used to expand parenthesis can also be used in reverse to obtain quadratic expressions. For example, | |
{{Fristående formel||<math>\begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}</math>}} | ||
- | + | This can be used to solve quadratic equations, for example, | |
{{Fristående formel||<math>\begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}</math>}} | ||
- | + | Taking roots then gives that <math>x+2=\pm\sqrt{9}</math> and thus that <math>x=-2\pm 3</math>, i.e. <math>x=1</math> or <math>x=-5</math>. | |
- | + | Sometimes it is necessary to add or subtract an appropriate number to obtain a suitable expression. The above equation, for example, could just as easily been presented to us as | |
{{Fristående formel||<math>x^2+4x-5=0\,\mbox{.}</math>}} | {{Fristående formel||<math>x^2+4x-5=0\,\mbox{.}</math>}} | ||
- | + | By adding 9 to both sides, we get a suitable expression on the left side: | |
{{Fristående formel||<math>\begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{,}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{,}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}</math>}} | ||
- | + | This method is called ''completing the square''. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Solve the equation <math>\ x^2-6x+7=2\,</math>. |
- | + | The coefficient in front of <math>x</math> is <math>-6</math> and it shows that we must have the number <math>(-3)^2=9</math> as the constant term on the left-hand side to make a complete square. By adding <math>2</math> to both sides we achieve this: | |
{{Fristående formel||<math>\begin{align*} x^2-6x+7+2 &= 2+2\,\mbox{,}\\ x^2-6x+9\phantom{{}+2} &= 4\,\mbox{,}\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2-6x+7+2 &= 2+2\,\mbox{,}\\ x^2-6x+9\phantom{{}+2} &= 4\,\mbox{,}\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}</math>}} | ||
- | + | Taking roots then gives <math>x-3=\pm 2</math>, which means that <math>x=1</math> or <math>x=5</math>. | |
</li> | </li> | ||
- | <li> | + | <li> Solve the equation <math>\ z^2+21=4-8z\,</math>. |
- | + | The equation can be written as <math>z^2+8z+17=0</math>. By subtracting 1 on both sides, we get a complete square on the left-hand side: | |
{{Fristående formel||<math>\begin{align*} z^2+8z+17-1 &= 0-1\,\mbox{,}\\ z^2+8z+16\phantom{{}-1} &= -1\,\mbox{,}\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\,\mbox{,}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} z^2+8z+17-1 &= 0-1\,\mbox{,}\\ z^2+8z+16\phantom{{}-1} &= -1\,\mbox{,}\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\,\mbox{,}\end{align*}</math>}} | ||
- | + | and thus <math>z+4=\pm\sqrt{-1}</math>. In other words, the solutions are <math>z=-4-i</math> and <math>z=-4+i</math>. | |
</li> | </li> | ||
</ol> | </ol> | ||
Zeile 319: | Zeile 318: | ||
</div> | </div> | ||
- | + | Generally, completing the square may be regarded as arranging that "the square of half the coefficient of the ''x-term''" is the constant term in the quadratic expression. This term can always be added add to the two sides without worrying about the other terms and then manipulating the equation. If the coefficients of the expression are complex numbers, one still can go about it in the same way. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 11''' |
- | + | Solve the equation <math>\ x^2-\frac{8}{3}x+1=2\,</math>. | |
- | + | Half the coefficient of <math>x</math> is <math>-\tfrac{4}{3}</math>. We thus add <math>\bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9}</math> to both sides | |
{{Fristående formel||<math>\begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}</math>}} | ||
- | + | Now it's easy to get to <math>x-\tfrac{4}{3}=\pm\tfrac{5}{3}</math> and thus to get that <math>x=\tfrac{4}{3}\pm\tfrac{5}{3}</math>, i.e. <math>x=-\tfrac{1}{3}</math> or <math>x=3</math>. | |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 12''' |
- | + | Solve the equation <math>\ x^2+px+q=0\,</math>. | |
- | + | Completing the square gives | |
{{Fristående formel||<math>\begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\,\mbox{,}\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\,\mbox{,}\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\,\mbox{,}\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\,\mbox{,}\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}</math>}} | ||
- | + | This gives the usual formula, ''pq-formula'', for solutions to quadratic equations | |
{{Fristående formel||<math>x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}</math>}} | {{Fristående formel||<math>x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}</math>}} | ||
Zeile 355: | Zeile 354: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 13''' |
+ | |||
+ | Solve the equation <math>\ z^2-(12+4i)z-4+24i=0\,</math>. | ||
- | Lös ekvationen <math>\ z^2-(12+4i)z-4+24i=0\,</math>. | ||
+ | Half the coefficient of <math>z</math> is <math>-(6+2i)</math> so we add the square of this expression to both sides | ||
- | Halva koefficienten för <math>z</math> är <math>-(6+2i)</math> så vi adderar kvadraten på detta uttryck till båda led | ||
{{Fristående formel||<math>z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}</math>}} | {{Fristående formel||<math>z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}</math>}} | ||
- | + | Expanding the square on the right-hand side <math>\ (-(6+2i))^2=36+24i+4i^2=32+24i\ </math> and completing the square on the left-hand side gives | |
{{Fristående formel||<math>\begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\,\mbox{,}\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\,\mbox{,}\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}</math>}} | ||
- | + | After a taking roots, we have that <math>\ z-(6+2i)=\pm 6\ </math> and therefore the solutions are <math>z=12+2i</math> and <math>z=2i</math>. | |
</div> | </div> | ||
- | + | If one wants to bring about a square in a detached expression one can use the same technique. In order not to change the value of the expression one both adds and subtracts the missing constant term, such as in the following, | |
{{Fristående formel||<math>\begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}</math>}} | ||
Zeile 379: | Zeile 379: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 14''' |
- | + | Complete the square in the expression <math>\ z^2+(2-4i)z+1-3i\,</math>. | |
- | + | Add and subtract the term <math>\bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\,</math>, | |
{{Fristående formel||<math>\begin{align*} z^2+(2-4i)z+1-3i &= z^2+(2-4i)z+(1-2i)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(-3-4i)+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2+4+i\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} z^2+(2-4i)z+1-3i &= z^2+(2-4i)z+(1-2i)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(-3-4i)+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2+4+i\,\mbox{.}\end{align*}</math>}} | ||
Zeile 392: | Zeile 392: | ||
- | == | + | ==Solving using a formula== |
- | + | To solve quadratic equations sometimes the simplest method is to use the usual formula for quadratic equations. However, this may lead to that one ends up with terms of the type <math>\sqrt{a+ib}</math>. One can then assume | |
{{Fristående formel||<math>z=x+iy=\sqrt{a+ib}\,\mbox{.}</math>}} | {{Fristående formel||<math>z=x+iy=\sqrt{a+ib}\,\mbox{.}</math>}} | ||
- | + | By squaring both sides we get | |
{{Fristående formel||<math>\begin{align*} (x+iy)^2 &= a+ib\,\mbox{,}\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} (x+iy)^2 &= a+ib\,\mbox{,}\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}</math>}} | ||
- | + | Matching the real and imaginary parts gives | |
{{Fristående formel||<math>\left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.</math>}} | {{Fristående formel||<math>\left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.</math>}} | ||
- | + | These equations can be solved by substitution, for example, <math>y= b/(2x)</math> can be inserted in the first equation. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 15''' |
- | + | Solve <math>\ \sqrt{-3-4i}\,</math>. | |
- | + | Put <math>\ x+iy=\sqrt{-3-4i}\ </math> where <math>x</math> and <math>y</math> are real numbers. Squaring both sides gives | |
{{Fristående formel||<math>\begin{align*} (x+iy)^2 &= -3-4i\,\mbox{,}\\ x^2 - y^2 + 2xyi &= -3-4i\,\mbox{,}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} (x+iy)^2 &= -3-4i\,\mbox{,}\\ x^2 - y^2 + 2xyi &= -3-4i\,\mbox{,}\end{align*}</math>}} | ||
- | + | which leads to the system of equations | |
{{Fristående formel||<math>\Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}</math>}} | ||
- | + | From the second equation, we can solve for <math>\ y=-4/(2x) = -2/x\ </math> and put it into the first equation to get | |
{{Fristående formel||<math>x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}</math>}} | {{Fristående formel||<math>x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}</math>}} | ||
- | + | This is a quadratic equation in <math>x^2</math> which can be seen more easily by putting <math>t=x^2</math>, | |
{{Fristående formel||<math>t^2 +3t -4=0\,\mbox{.}</math>}} | {{Fristående formel||<math>t^2 +3t -4=0\,\mbox{.}</math>}} | ||
- | + | The solutions are <math>t = 1</math> and <math>t = -4</math>. The latter solution must be rejected, as <math>x</math> and <math>y</math> have been assumed to be real numbers, and thus <math>x^2=-4</math> cannot be true. We get <math>x=\pm\sqrt{1}</math>, which gives us two possible solutions | |
- | * <math>\ x=-1\ </math> | + | * <math>\ x=-1\ </math> which gives <math>\ y=-2/(-1)=2\,</math>, |
- | * <math>\ x=1\ </math> | + | * <math>\ x=1\ </math> which gives <math>\ y=-2/1=-2\,</math>. |
- | + | So we can conclude that | |
{{Fristående formel||<math>\sqrt{-3-4i} = \biggl\{\begin{align*} &\phantom{-}1-2i\,\mbox{,}\\ &-1+2i\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\sqrt{-3-4i} = \biggl\{\begin{align*} &\phantom{-}1-2i\,\mbox{,}\\ &-1+2i\,\mbox{.}\end{align*}</math>}} | ||
Zeile 443: | Zeile 443: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 16''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Solve the equation <math>\ z^2-2z+10=0\,</math>. |
- | + | The formula for solutions to a quadratic equations (see example 3) gives that | |
{{Fristående formel||<math>z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}</math>}} | {{Fristående formel||<math>z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}</math>}} | ||
</li> | </li> | ||
- | <li> | + | <li> Solve the equation <math>\ z^2 + (4-2i)z -4i=0\,\mbox{.}</math> |
- | + | Here, once again , the ''pq''-formula may be used giving the solutions directly . | |
{{Fristående formel||<math>\begin{align*} z &= -2+i\pm\sqrt{\smash{(-2+i)^2+4i}\vphantom{i^2}} = -2+i\pm\sqrt{4-4i+i^{\,2}+4i}\\ &=-2+i\pm\sqrt{3} = -2\pm\sqrt{3}+i\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} z &= -2+i\pm\sqrt{\smash{(-2+i)^2+4i}\vphantom{i^2}} = -2+i\pm\sqrt{4-4i+i^{\,2}+4i}\\ &=-2+i\pm\sqrt{3} = -2\pm\sqrt{3}+i\,\mbox{.}\end{align*}</math>}} | ||
</li> | </li> | ||
- | <li> | + | <li> Solve the equation <math>\ iz^2+(2+6i)z+2+11i=0\,\mbox{.}</math> |
- | Division | + | Division of both sides with <math>i</math> gives |
{{Fristående formel||<math>\begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\,\mbox{,}\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\,\mbox{,}\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}</math>}} | ||
- | + | Applying the ''pq''- formula gives | |
{{Fristående formel||<math>\begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\end{align*}</math>}} | ||
- | + | where we used the resulting value of<math>\ \sqrt{-3-4i}\ </math> which we obtained in example 15. The solutions are therefore | |
{{Fristående formel||<math>z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}</math>}} |
Version vom 11:33, 25. Jul. 2008
|
Content:
- De Moivre's Theorem
- Binomial equations
- exponential function
- Eulers formula
- Completing the square
- Quadratic equations
Learning outcomes:
After this section, you will have learned how to:
- Calculate the powers of complex numbers with Moivres Theorem.
- Calculate the roots of certain complex numbers by rewriting to polar form.
- Solve binomial equations.
- Complete the square for complex quadratics expressions.
- Solve complex quadratic equations.
De Moivre's Theorem
The computational rules \displaystyle \ \arg (zw) = \arg z + \arg w\ and \displaystyle \ |\,zw\,| = |\,z\,|\cdot|\,w\,|\ mean that
- REDIRECT Template:Abgesetzte Formel
For an arbitrary number \displaystyle z=r\,(\cos \alpha +i\,\sin \alpha), we therefore have the following relationship
- REDIRECT Template:Abgesetzte Formel
If \displaystyle |\,z\,|=1, (i.e. \displaystyle z lies on the unit circle) then one has the special relationship
- REDIRECT Template:Abgesetzte Formel
which is usually referred to as de Moivres Theorem. This relationship is very useful when it comes to deriving trigonometric identities and calculating the roots and powers of complex numbers.
Example 1
If \displaystyle z = \frac{1+i}{\sqrt2}, determine \displaystyle z^3 and \displaystyle z^{100}.
We write \displaystyle z in polar form \displaystyle \ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ and Moivres theorem gives
- REDIRECT Template:Abgesetzte Formel
Example 2
In the usual way one does an expansion by means of the squaring rules
- REDIRECT Template:Abgesetzte Formel
and according to the Moivres theorem one gets
- REDIRECT Template:Abgesetzte Formel
If one equates the real and imaginary parts of the two expressions one gets the well-known trigonometric formulas
- REDIRECT Template:Abgesetzte Formel
Example 3
Simplify \displaystyle \ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,.
We write the numbers \displaystyle \sqrt{3}+i, \displaystyle 1+i\sqrt{3} and \displaystyle 1+i in polar form
- \displaystyle \quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(},
- \displaystyle \quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(},
- \displaystyle \quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}.
Then we get with Moivres Theorem
- REDIRECT Template:Abgesetzte Formel
and this expression can be simplified by performing multiplication and division in polar form
- REDIRECT Template:Abgesetzte Formel
Binomial equations
A complex number \displaystyle z is called the n:th root of the complex number \displaystyle w if
- REDIRECT Template:Abgesetzte Formel
The above relationship can also be seen as an equation in which \displaystyle z is unknown. This type of equation is called a binomial equation. The solutions is obtained by rewriting both sides in polar form and comparing both the moduli and the arguments.
For a given number \displaystyle w=|\,w\,|\,(\cos \theta + i\,\sin \theta) one assumes that \displaystyle z=r\,(\cos \alpha + i\, \sin \alpha) and after insertion, the binomial equation becomes
- REDIRECT Template:Abgesetzte Formel
where Moivres theorm has been used on the left-hand side. Equating moduli and arguments gives
- REDIRECT Template:Abgesetzte Formel
Note that we add multiples of \displaystyle 2\pi to include all possible values of the argument that have the same direction as \displaystyle \theta. One gets
- REDIRECT Template:Abgesetzte Formel
This gives one value of \displaystyle r, but infinitely many values of \displaystyle \alpha. Despite this, there are not infinitely many solutions. From \displaystyle k = 0 to \displaystyle k = n - 1 one gets different arguments for \displaystyle z and thus different positions for \displaystyle z in the complex plane. For the other values of \displaystyle k due to the periodicity of the sine and cosine, one returns to these positions and therefore no new solutions are obtained. This reasoning shows that the equation \displaystyle z^n=w has exactly \displaystyle n roots.
Comment. Note that the roots arguments differ from each other by \displaystyle 2\pi/n so that the roots are evenly distributed on a circle with radius \displaystyle \sqrt[\scriptstyle n]{|w|} and form corners in a regular n-gon (an n sided polygon).
Exempel 4
Solve the binomial equation \displaystyle \ z^4= 16\,i\,.
Write \displaystyle z and \displaystyle 16\,i in polar form
- \displaystyle \quad z=r\,(\cos \alpha + i\,\sin \alpha)\,,
- \displaystyle \quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}.
This turns the equation \displaystyle \ z^4=16\,i\ into
- REDIRECT Template:Abgesetzte Formel
Matching the moduli and arguments on both sides gives
- REDIRECT Template:Abgesetzte Formel
The solutions to the equation is thus
| 3.3 - Figur - Komplexa talen z₁, z₂, z₃ och z₄ |
Exponential form of complex numbers
If we manipulate \displaystyle i as if it were a real number and treat a complex number \displaystyle z as a function of just \displaystyle \alpha ( where \displaystyle r is a constant),
- REDIRECT Template:Abgesetzte Formel
we get after differentiation
- REDIRECT Template:Abgesetzte Formel
The only real functions which behave like this are \displaystyle f(x)= e^{\,kx}, which justifies the definition
- REDIRECT Template:Abgesetzte Formel
This definition turns out to be a completely natural generalisation of the exponential function for the real numbers. Putting \displaystyle z=a+ib one gets
- REDIRECT Template:Abgesetzte Formel
The definition of \displaystyle e^{\,z} may be regarded as a convenient notation for the polar form of a complex number, as \displaystyle z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,.
Example 5
For a real number \displaystyle z the definition is consistent with the case when the exponent is real, as \displaystyle z=a+0\cdot i which gives
- REDIRECT Template:Abgesetzte Formel
Example 6
A further indication of why the above definition is so natural is given by the relationship
- REDIRECT Template:Abgesetzte Formel
which demonstrates that Moivres theorm is actually identical to the well-known law of powers,
- REDIRECT Template:Abgesetzte Formel
Example 7
From the above definition, one can obtain the relationship
- REDIRECT Template:Abgesetzte Formel
which connects together the, generally regarded, most basic numbers in mathematics: \displaystyle e, \displaystyle \pi, \displaystyle i and 1. This relationship is seen by many as the most beautiful in mathematics and was discovered by Euler in the early 1700's.
Example 8
Solve the equation \displaystyle \ (z+i)^3 = -8i.
Put \displaystyle w = z + i. We then get the binomial equation \displaystyle \ w^3=-8i\,. To begin with, we rewrite \displaystyle w and \displaystyle -8i in polar form
- \displaystyle \quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}
- \displaystyle \quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}
The equation in polar form is \displaystyle \ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ and matching the moduli and arguments on both sides gives,
- REDIRECT Template:Abgesetzte Formel
The roots of the equation are thus
- \displaystyle \quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}
- \displaystyle \quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}
- \displaystyle \quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}
i.e. \displaystyle z_1 = 2i-i=i, \displaystyle z_2 = - \sqrt{3}-2i and \displaystyle z_3 = \sqrt{3}-2i.
Example 9
Solve \displaystyle \ z^2 = \overline{z}\,.
If for \displaystyle z=a+ib one has \displaystyle |\,z\,|=r and \displaystyle \arg z = \alpha then for \displaystyle \overline{z}= a-ib one gets \displaystyle |\,\overline{z}\,|=r and \displaystyle \arg \overline{z} = - \alpha.This means that \displaystyle z=r\,e^{i\alpha} and \displaystyle \overline{z} = r\,e^{-i\alpha}. The equation can be written
- REDIRECT Template:Abgesetzte Formel
which directly gives that \displaystyle r=0 is a solution, i.e. \displaystyle z=0. If we assume that \displaystyle r\not=0 then the equation can be written as \displaystyle \ r\,e^{3i\alpha} = 1\,, which gives after matching moduli and arguments
- REDIRECT Template:Abgesetzte Formel
The solutions are
- \displaystyle \quad z_1 = e^0 = 1\,\mbox{,}
- \displaystyle \quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}
- \displaystyle \quad z_3 = e^{4\pi i/ 3} = \cos\frac{4\pi}{3} + i\,\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt3}{2}\,i\,\mbox{,}
- \displaystyle \quad z_4 = 0\,\mbox{.}
Completing the square
The squaring rules,
- REDIRECT Template:Abgesetzte Formel
which are usually used to expand parenthesis can also be used in reverse to obtain quadratic expressions. For example,
- REDIRECT Template:Abgesetzte Formel
This can be used to solve quadratic equations, for example,
- REDIRECT Template:Abgesetzte Formel
Taking roots then gives that \displaystyle x+2=\pm\sqrt{9} and thus that \displaystyle x=-2\pm 3, i.e. \displaystyle x=1 or \displaystyle x=-5.
Sometimes it is necessary to add or subtract an appropriate number to obtain a suitable expression. The above equation, for example, could just as easily been presented to us as
- REDIRECT Template:Abgesetzte Formel
By adding 9 to both sides, we get a suitable expression on the left side:
- REDIRECT Template:Abgesetzte Formel
This method is called completing the square.
Example 10
- Solve the equation \displaystyle \ x^2-6x+7=2\,.
The coefficient in front of \displaystyle x is \displaystyle -6 and it shows that we must have the number \displaystyle (-3)^2=9 as the constant term on the left-hand side to make a complete square. By adding \displaystyle 2 to both sides we achieve this:
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle \ z^2+21=4-8z\,.
The equation can be written as \displaystyle z^2+8z+17=0. By subtracting 1 on both sides, we get a complete square on the left-hand side:
- REDIRECT Template:Abgesetzte Formel
Generally, completing the square may be regarded as arranging that "the square of half the coefficient of the x-term" is the constant term in the quadratic expression. This term can always be added add to the two sides without worrying about the other terms and then manipulating the equation. If the coefficients of the expression are complex numbers, one still can go about it in the same way.
Example 11
Solve the equation \displaystyle \ x^2-\frac{8}{3}x+1=2\,.
Half the coefficient of \displaystyle x is \displaystyle -\tfrac{4}{3}. We thus add \displaystyle \bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9} to both sides
- REDIRECT Template:Abgesetzte Formel
Now it's easy to get to \displaystyle x-\tfrac{4}{3}=\pm\tfrac{5}{3} and thus to get that \displaystyle x=\tfrac{4}{3}\pm\tfrac{5}{3}, i.e. \displaystyle x=-\tfrac{1}{3} or \displaystyle x=3.
Example 12
Solve the equation \displaystyle \ x^2+px+q=0\,.
Completing the square gives
- REDIRECT Template:Abgesetzte Formel
This gives the usual formula, pq-formula, for solutions to quadratic equations
- REDIRECT Template:Abgesetzte Formel
Example 13
Solve the equation \displaystyle \ z^2-(12+4i)z-4+24i=0\,.
Half the coefficient of \displaystyle z is \displaystyle -(6+2i) so we add the square of this expression to both sides
- REDIRECT Template:Abgesetzte Formel
Expanding the square on the right-hand side \displaystyle \ (-(6+2i))^2=36+24i+4i^2=32+24i\ and completing the square on the left-hand side gives
- REDIRECT Template:Abgesetzte Formel
After a taking roots, we have that \displaystyle \ z-(6+2i)=\pm 6\ and therefore the solutions are \displaystyle z=12+2i and \displaystyle z=2i.
If one wants to bring about a square in a detached expression one can use the same technique. In order not to change the value of the expression one both adds and subtracts the missing constant term, such as in the following,
- REDIRECT Template:Abgesetzte Formel
Example 14
Complete the square in the expression \displaystyle \ z^2+(2-4i)z+1-3i\,.
Add and subtract the term \displaystyle \bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\,,
- REDIRECT Template:Abgesetzte Formel
Solving using a formula
To solve quadratic equations sometimes the simplest method is to use the usual formula for quadratic equations. However, this may lead to that one ends up with terms of the type \displaystyle \sqrt{a+ib}. One can then assume
- REDIRECT Template:Abgesetzte Formel
By squaring both sides we get
- REDIRECT Template:Abgesetzte Formel
Matching the real and imaginary parts gives
- REDIRECT Template:Abgesetzte Formel
These equations can be solved by substitution, for example, \displaystyle y= b/(2x) can be inserted in the first equation.
Example 15
Solve \displaystyle \ \sqrt{-3-4i}\,.
Put \displaystyle \ x+iy=\sqrt{-3-4i}\ where \displaystyle x and \displaystyle y are real numbers. Squaring both sides gives
- REDIRECT Template:Abgesetzte Formel
which leads to the system of equations
- REDIRECT Template:Abgesetzte Formel
From the second equation, we can solve for \displaystyle \ y=-4/(2x) = -2/x\ and put it into the first equation to get
- REDIRECT Template:Abgesetzte Formel
This is a quadratic equation in \displaystyle x^2 which can be seen more easily by putting \displaystyle t=x^2,
- REDIRECT Template:Abgesetzte Formel
The solutions are \displaystyle t = 1 and \displaystyle t = -4. The latter solution must be rejected, as \displaystyle x and \displaystyle y have been assumed to be real numbers, and thus \displaystyle x^2=-4 cannot be true. We get \displaystyle x=\pm\sqrt{1}, which gives us two possible solutions
- \displaystyle \ x=-1\ which gives \displaystyle \ y=-2/(-1)=2\,,
- \displaystyle \ x=1\ which gives \displaystyle \ y=-2/1=-2\,.
So we can conclude that
- REDIRECT Template:Abgesetzte Formel
Example 16
- Solve the equation \displaystyle \ z^2-2z+10=0\,.
The formula for solutions to a quadratic equations (see example 3) gives that
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle \ z^2 + (4-2i)z -4i=0\,\mbox{.}
Here, once again , the pq-formula may be used giving the solutions directly .
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle \ iz^2+(2+6i)z+2+11i=0\,\mbox{.}
Division of both sides with \displaystyle i gives
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel