3.1 Rechnungen mit komplexen Zahlen
Aus Online Mathematik Brückenkurs 2
K (Regenerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{Vald flik|[[3.1 Räkning med komplexa tal| | + | {{Vald flik|[[3.1 Räkning med komplexa tal|Theory]]}} |
- | {{Ej vald flik|[[3.1 Övningar| | + | {{Ej vald flik|[[3.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content:''' |
- | * Real | + | * Real and imaginary part |
- | * Addition | + | * Addition and subtraction of complex numbers |
- | * | + | * Complex conjugate |
- | * | + | * Multiplication and division of complex numbers |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned to: | |
- | * | + | * Simplify expressions that are constructed using complex numbers and the four arithmetic operations. |
- | * | + | * Solve first order complex number equations and simplify the answer. |
}} | }} | ||
- | == | + | == Introduction == |
- | + | The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers are not enough to be solutions of all possible algebraic equations, in other words. there are equations of the type | |
{{Fristående formel||<math>a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0</math>}} | {{Fristående formel||<math>a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0</math>}} | ||
- | + | which do not have a solution among the real numbers. For example, the equation <math>x^2+1=0</math> has no real solution, since no real number satisfies <math>x^2=-1</math>. However, if we can imagine <math>\sqrt{-1}</math> as the number that solves the equation <math>x^2=-1</math> and manipulate <math>\sqrt{-1}</math> as any other number, it turns out that every algebraic equation has solutions. | |
- | + | The number <math>\sqrt{-1}</math> however is not real number, we cannot go out into the world and measure <math>\sqrt{-1}</math> anywhere, or find something that is numerically <math>\sqrt{-1}</math>, but we can still have great use of this number in many real contexts. | |
- | + | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
- | + | If we would like to find out the sum of the roots (solutions) of the equation <math>x^2-2x+2=0</math> we can first obtain the roots <math>x_1=1+\sqrt{-1}</math> and <math>x_2=1-\sqrt{-1}</math>. These roots contain the non-real number <math>\sqrt{-1}</math>. If we allows ourselves to do calculations containing <math>\sqrt{-1}</math> we see that the sum of <math>x_1</math> and <math>x_2</math> turns out to be <math>1+\sqrt{-1} + 1-\sqrt{-1} =2</math>, which certainly is a real number. | |
- | + | In order to solve our problem we had to use a number that was not real in order to arrive at the real number solution. | |
</div> | </div> | ||
- | == Definition | + | == Definition of complex numbers== |
- | + | One introduces the ''imaginary unit'' <math>i=\sqrt{-1}</math> and define a ''complex number'' as an object that can be written in the form | |
<div class="regel"> | <div class="regel"> | ||
Zeile 52: | Zeile 51: | ||
</div> | </div> | ||
- | + | where <math>a</math> and <math>b</math> are real numbers, and <math>i</math> satisfy <math>i^2=-1</math>. | |
- | + | If <math>a = 0</math> then the number is "purely imaginary". If <math>b = 0</math> the number is real. We can see that the real numbers are a subset of the complex numbers. The set of complex numbers is designated by '''C'''. | |
- | + | For an arbitrary complex number one often uses the symbol beteckningen <math>z</math>. If <math>z=a+bi</math>, where <math>a</math> and <math>b</math> are real, then <math>a</math> is the real part and <math>b</math> the imaginary part of <math>z</math>. One uses the following notation: <br\> | |
<div class="regel"> | <div class="regel"> | ||
Zeile 62: | Zeile 61: | ||
</div> | </div> | ||
- | + | When one calculates with complex numbers one treats them in principle like real numbers, but keeps track of the fact that <math>i^2=-1</math>. | |
- | == Addition | + | ==Addition and subtraction == |
- | + | To add or subtract complex numbers one adds (subtracts) the real and imaginary parts separately. | |
+ | If <math>z=a+bi</math> and <math>w=c+di</math> are two complex numbers then, | ||
<div class="regel"> | <div class="regel"> | ||
Zeile 74: | Zeile 74: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 86: | Zeile 86: | ||
- | == | + | == Multiplication == |
- | + | Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that <math>i^2=-1</math>. Generally one has for two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> that | |
<div class="regel">{{Fristående formel||<math>z\cdot w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.}</math>}} | <div class="regel">{{Fristående formel||<math>z\cdot w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.}</math>}} | ||
Zeile 94: | Zeile 94: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 108: | Zeile 108: | ||
- | == | + | == Complex conjugate == |
- | + | If <math>z=a+bi</math> then <math>\overline{z} = a-bi</math> is called the ''complex conjugate'' of <math>z</math> (the opposite is also true, that <math>z</math> is conjugate to <math>\overline{z}</math>). One obtains the relationships | |
<div class="regel"> | <div class="regel"> | ||
Zeile 116: | Zeile 116: | ||
</div> | </div> | ||
- | + | but most importantly, using the difference of two squares rule, one obtains | |
<div class="regel"> | <div class="regel"> | ||
Zeile 122: | Zeile 122: | ||
</div> | </div> | ||
- | + | i.e. that the product of a complex number and its conjugate is always real. | |
+ | |||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>z=5+i\qquad</math> | + | <li><math>z=5+i\qquad</math> then <math>\quad\overline{z}=5-i\,</math>.</li> |
- | <li><math>z=-3-2i\qquad</math> | + | <li><math>z=-3-2i\qquad</math> then <math>\quad\overline{z} =-3+2i\,</math>.</li> |
- | <li><math>z=17\qquad</math> | + | <li><math>z=17\qquad</math> then <math>\quad\overline{z} =17\,</math>.</li> |
- | <li><math>z=i\qquad</math> | + | <li><math>z=i\qquad</math> then <math>\quad\overline{z} =-i\,</math>.</li> |
- | <li><math>z=-5i\qquad</math> | + | <li><math>z=-5i\qquad</math> then <math>\quad\overline{z} =5i\,</math>.</li> |
</ol> | </ol> | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> If <math>z=4+3i</math> one has |
*<math>z+\overline{z} = 4 + 3i + 4 -3i = 8</math> | *<math>z+\overline{z} = 4 + 3i + 4 -3i = 8</math> | ||
*<math>z-\overline{z} = 6i</math> | *<math>z-\overline{z} = 6i</math> | ||
*<math>z \cdot \overline{z} = 4^2-(3i)^2=16+9=25</math> | *<math>z \cdot \overline{z} = 4^2-(3i)^2=16+9=25</math> | ||
</li> | </li> | ||
- | <li> | + | <li> If for <math>z</math> one has <math>\mathop{\rm Re} z=-2</math> |
- | + | and <math>\mathop{\rm Im} z=1</math>, one gets | |
*<math>z+\overline{z} = 2\,\mathop{\rm Re} z = -4</math> | *<math>z+\overline{z} = 2\,\mathop{\rm Re} z = -4</math> | ||
*<math>z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i</math> | *<math>z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i</math> | ||
Zeile 158: | Zeile 159: | ||
== Division == | == Division == | ||
- | + | For the division of two complex numbers one multiplies the numerator and denominator with the complex conjugate of the denominator thus getting a denominator which is a real number. Thereafter, both the real and imaginary parts of the numerator is divided by this number (the new denominator). In general, if <math>z=a+bi</math> and <math>w=c+di</math>: | |
<div class="regel"> | <div class="regel"> | ||
Zeile 165: | Zeile 166: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 178: | Zeile 179: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 206: | Zeile 207: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Determine the real number <math>a</math> so that the expression <math>\ \frac{2-3i}{2+ai}\ </math> becomes real. | |
<br\> | <br\> | ||
<br\> | <br\> | ||
- | + | Multiply the numerator and denominator with the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts. | |
{{Fristående formel||<math>\frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2}</math>}} | {{Fristående formel||<math>\frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2}</math>}} | ||
- | + | If the expression is to be real , the imaginary part must be 0, ie. | |
{{Fristående formel||<math>2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.}</math>}} | {{Fristående formel||<math>2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.}</math>}} | ||
Zeile 222: | Zeile 223: | ||
- | == | + | == Equations == |
- | + | For two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> to be equal, requires that both the real and imaginary parts are equal, in other words. that <math>a=c</math> and <math>b=d</math>. When you are looking for an unknown complex number <math>z</math> in an equation, you can either try to solve for the number <math>z</math> in the usual way, or insert <math>z=a+bi</math> in the equation and then compare the real and imaginary parts of the two sides of the equation with each other. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Solve the equation <math>3z+1-i=z-3+7i</math>. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Collect all <math>z</math> on the left-hand side by subtracting <math>z</math> from both sides | |
- | {{Fristående formel||<math>2z+1-i = -3+7i</math>}} | + | {{Fristående formel||<math>2z+1-i = -3+7i</math>}} and now subtract <math>1-i</math> |
- | + | ||
{{Fristående formel||<math>2z = -4+8i\,\mbox{.}</math>}} | {{Fristående formel||<math>2z = -4+8i\,\mbox{.}</math>}} | ||
- | + | This gives that <math>\ z=\frac{-4+8i}{2}=-2+4i\,\mbox{.}</math></li> | |
- | <li> | + | <li> Solve the equation <math>z(-1-i)=6-2i</math>. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Divide both sides by <math>-1-i</math> in order to obtain <math>z</math> | |
{{Fristående formel||<math>z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.}</math>}}</li> | {{Fristående formel||<math>z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li> Solve the equation <math>3iz-2i=1-z</math>. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Adding <math>z</math> and <math>2i</math> to both sides gives | |
{{Fristående formel||<math>3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.}</math>}} | {{Fristående formel||<math>3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.}</math>}} | ||
- | + | This gives | |
{{Fristående formel||<math>z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.}</math>}}</li> | {{Fristående formel||<math>z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li> Solve the equation <math>2z+1-i=\bar z +3 + 2i</math>. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The equation contains both <math>z</math> as well as <math>\overline{z}</math> and therefore we assume <math>z</math> to be <math>z=a+ib</math> and solve the equation for <math>a</math> and <math>b</math> by equating the real and imaginary parts of both sides {{Fristående formel||<math>2(a+bi)+1-i=(a-bi)+3+2i</math>}} | |
- | {{Fristående formel||<math>2(a+bi)+1-i=(a-bi)+3+2i</math>}} | + | i.e. |
- | + | ||
{{Fristående formel||<math>(2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,}</math>}} | {{Fristående formel||<math>(2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,}</math>}} | ||
- | + | which gives | |
{{Fristående formel||<math>\left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}</math>}} | {{Fristående formel||<math>\left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}</math>}} | ||
- | + | The answer is therefore, <math>z=2+i</math>.</li> | |
</ol> | </ol> | ||
Zeile 270: | Zeile 269: | ||
<div class="inforuta"> | <div class="inforuta"> | ||
- | ''' | + | '''Study advice ''' |
- | + | ||
- | + | ||
- | + | '''Keep in mind that:''' | |
- | + | Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that <math>i^2=-1</math>. | |
+ | Quotients of complex numbers are simplified by multiplying the numerator and denominator with the complex conjugate of the denominator. | ||
</div> | </div> |
Version vom 08:00, 23. Jul. 2008
|
Content:
- Real and imaginary part
- Addition and subtraction of complex numbers
- Complex conjugate
- Multiplication and division of complex numbers
Learning outcomes:
After this section, you will have learned to:
- Simplify expressions that are constructed using complex numbers and the four arithmetic operations.
- Solve first order complex number equations and simplify the answer.
Introduction
The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers are not enough to be solutions of all possible algebraic equations, in other words. there are equations of the type
- REDIRECT Template:Abgesetzte Formel
which do not have a solution among the real numbers. For example, the equation \displaystyle x^2+1=0 has no real solution, since no real number satisfies \displaystyle x^2=-1. However, if we can imagine \displaystyle \sqrt{-1} as the number that solves the equation \displaystyle x^2=-1 and manipulate \displaystyle \sqrt{-1} as any other number, it turns out that every algebraic equation has solutions. The number \displaystyle \sqrt{-1} however is not real number, we cannot go out into the world and measure \displaystyle \sqrt{-1} anywhere, or find something that is numerically \displaystyle \sqrt{-1}, but we can still have great use of this number in many real contexts.
Example 1
If we would like to find out the sum of the roots (solutions) of the equation \displaystyle x^2-2x+2=0 we can first obtain the roots \displaystyle x_1=1+\sqrt{-1} and \displaystyle x_2=1-\sqrt{-1}. These roots contain the non-real number \displaystyle \sqrt{-1}. If we allows ourselves to do calculations containing \displaystyle \sqrt{-1} we see that the sum of \displaystyle x_1 and \displaystyle x_2 turns out to be \displaystyle 1+\sqrt{-1} + 1-\sqrt{-1} =2, which certainly is a real number.
In order to solve our problem we had to use a number that was not real in order to arrive at the real number solution.
Definition of complex numbers
One introduces the imaginary unit \displaystyle i=\sqrt{-1} and define a complex number as an object that can be written in the form
- REDIRECT Template:Abgesetzte Formel
where \displaystyle a and \displaystyle b are real numbers, and \displaystyle i satisfy \displaystyle i^2=-1.
If \displaystyle a = 0 then the number is "purely imaginary". If \displaystyle b = 0 the number is real. We can see that the real numbers are a subset of the complex numbers. The set of complex numbers is designated by C.
For an arbitrary complex number one often uses the symbol beteckningen \displaystyle z. If \displaystyle z=a+bi, where \displaystyle a and \displaystyle b are real, then \displaystyle a is the real part and \displaystyle b the imaginary part of \displaystyle z. One uses the following notation:
- REDIRECT Template:Abgesetzte Formel
When one calculates with complex numbers one treats them in principle like real numbers, but keeps track of the fact that \displaystyle i^2=-1.
Addition and subtraction
To add or subtract complex numbers one adds (subtracts) the real and imaginary parts separately. If \displaystyle z=a+bi and \displaystyle w=c+di are two complex numbers then,
- REDIRECT Template:Abgesetzte Formel
Example 2
- \displaystyle (3-5i)+(-4+i)=-1-4i
- \displaystyle \bigl(\tfrac{1}{2}+2i\bigr)-\bigl(\tfrac{1}{6}+3i\bigr) = \tfrac{1}{3}-i
- \displaystyle \frac{3+2i}{5}-\frac{3-i}{2} = \frac{6+4i}{10}-\frac{15-5i}{10} = \frac{-9+9i}{10} = -0{,}9 + 0{,}9i
Multiplication
Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that \displaystyle i^2=-1. Generally one has for two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di that
- REDIRECT Template:Abgesetzte Formel
Example 3
- \displaystyle 3(4-i)=12-3i
- \displaystyle 2i(3-5i)=6i-10i^2=10+6i
- \displaystyle (1+i)(2+3i)=2+3i+2i+3i^2=-1+5i
- \displaystyle (3+2i)(3-2i)=3^2-(2i)^2=9-4i^2=13
- \displaystyle (3+i)^2=3^2+2\cdot3i+i^2=8+6i
- \displaystyle i^{12}=(i^2)^6=(-1)^6=1
- \displaystyle i^{23}=i^{22}\cdot i=(i^2)^{11}\cdot i=(-1)^{11}i=-i
Complex conjugate
If \displaystyle z=a+bi then \displaystyle \overline{z} = a-bi is called the complex conjugate of \displaystyle z (the opposite is also true, that \displaystyle z is conjugate to \displaystyle \overline{z}). One obtains the relationships
- REDIRECT Template:Abgesetzte Formel
but most importantly, using the difference of two squares rule, one obtains
- REDIRECT Template:Abgesetzte Formel
i.e. that the product of a complex number and its conjugate is always real.
Example 4
- \displaystyle z=5+i\qquad then \displaystyle \quad\overline{z}=5-i\,.
- \displaystyle z=-3-2i\qquad then \displaystyle \quad\overline{z} =-3+2i\,.
- \displaystyle z=17\qquad then \displaystyle \quad\overline{z} =17\,.
- \displaystyle z=i\qquad then \displaystyle \quad\overline{z} =-i\,.
- \displaystyle z=-5i\qquad then \displaystyle \quad\overline{z} =5i\,.
Example 5
- If \displaystyle z=4+3i one has
- \displaystyle z+\overline{z} = 4 + 3i + 4 -3i = 8
- \displaystyle z-\overline{z} = 6i
- \displaystyle z \cdot \overline{z} = 4^2-(3i)^2=16+9=25
- If for \displaystyle z one has \displaystyle \mathop{\rm Re} z=-2
and \displaystyle \mathop{\rm Im} z=1, one gets
- \displaystyle z+\overline{z} = 2\,\mathop{\rm Re} z = -4
- \displaystyle z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i
- \displaystyle z\cdot \overline{z} = (-2)^2+1^2=5
Division
For the division of two complex numbers one multiplies the numerator and denominator with the complex conjugate of the denominator thus getting a denominator which is a real number. Thereafter, both the real and imaginary parts of the numerator is divided by this number (the new denominator). In general, if \displaystyle z=a+bi and \displaystyle w=c+di:
- REDIRECT Template:Abgesetzte Formel
Example 6
- \displaystyle \quad\frac{4+2i}{1+i} = \frac{(4+2i)(1-i)}{(1+i)(1-i)} = \frac{4-4i+2i-2i^2}{1-i^2} = \frac{6-2i}{2}=3-i
- \displaystyle \quad\frac{25}{3-4i} = \frac{25(3+4i)}{(3-4i)(3+4i)} = \frac{25(3+4i)}{3^2-16i^2} = \frac{25(3+4i)}{25} = 3+4i
- \displaystyle \quad\frac{3-2i}{i} = \frac{(3-2i)(-i)}{i(-i)} = \frac{-3i+2i^2}{-i^2} = \frac{-2-3i}{1} = -2-3i
Example 7
- \displaystyle \quad\frac{2}{2-i}-\frac{i}{1+i}
= \frac{2(2+i)}{(2-i)(2+i)} - \frac{i(1-i)}{(1+i)(1-i)}
= \frac{4+2i}{5}-\frac{1+i}{2}
\displaystyle \quad\phantom{\frac{2}{2-i}-\frac{i}{1+i}}{} = \frac{8+4i}{10}-\frac{5+5i}{10} = \frac{3-i}{10}\vphantom{\Biggl(} - \displaystyle \quad\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}
= \frac{\dfrac{1-i}{1-i}-\dfrac{2}{1-i}}{\dfrac{2i(2+i)}{(2+i)}
+ \dfrac{i}{2+i}}
= \frac{\dfrac{1-i-2}{1-i}}{\dfrac{4i+2i^2 + i}{2+i}}
= \frac{\dfrac{-1-i}{1-i}}{\dfrac{-2+5i}{2+i}}
\displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-i}{1-i}\cdot \frac{2+i}{-2+5i} = \frac{(-1-i)(2+i)}{(1-i)(-2+5i)} = \frac{-2-i-2i-i^2}{-2+5i+2i-5i^2}\vphantom{\Biggl(}
\displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-3i}{3+7i} = \frac{(-1-3i)(3-7i)}{(3+7i)(3-7i)} = \frac{-3+7i-9i+21i^2}{3^2-49i^2}\vphantom{\Biggl(} \displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-24-2i}{58} = \frac{-12-i}{29}\vphantom{\Biggl(}
Example 8
Determine the real number \displaystyle a so that the expression \displaystyle \ \frac{2-3i}{2+ai}\ becomes real.
Multiply the numerator and denominator with the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts.
- REDIRECT Template:Abgesetzte Formel
If the expression is to be real , the imaginary part must be 0, ie.
- REDIRECT Template:Abgesetzte Formel
Equations
For two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di to be equal, requires that both the real and imaginary parts are equal, in other words. that \displaystyle a=c and \displaystyle b=d. When you are looking for an unknown complex number \displaystyle z in an equation, you can either try to solve for the number \displaystyle z in the usual way, or insert \displaystyle z=a+bi in the equation and then compare the real and imaginary parts of the two sides of the equation with each other.
Example 9
- Solve the equation \displaystyle 3z+1-i=z-3+7i.
Collect all \displaystyle z on the left-hand side by subtracting \displaystyle z from both sides- REDIRECT Template:Abgesetzte Formel and now subtract \displaystyle 1-i
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle z(-1-i)=6-2i.
Divide both sides by \displaystyle -1-i in order to obtain \displaystyle z- REDIRECT Template:Abgesetzte Formel
Adding \displaystyle z and \displaystyle 2i to both sides gives
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
The equation contains both \displaystyle z as well as \displaystyle \overline{z} and therefore we assume \displaystyle z to be \displaystyle z=a+ib and solve the equation for \displaystyle a and \displaystyle b by equating the real and imaginary parts of both sides
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
Study advice
Keep in mind that:
Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that \displaystyle i^2=-1.
Quotients of complex numbers are simplified by multiplying the numerator and denominator with the complex conjugate of the denominator.