2.2 Integration durch Substitution

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Vald flik|[[2.2 Variabelsubstitution|Teori]]}}
+
{{Vald flik|[[2.2 Variabelsubstitution|Theory]]}}
-
{{Ej vald flik|[[2.2 Övningar|Övningar]]}}
+
{{Ej vald flik|[[2.2 Övningar|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Content:'''
-
* Variabelsubstitution
+
* Integration by substitution
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned to:
-
* Förstå härledningen av formeln för variabelsubstitution.
+
* Understand the derivation of the formula for variable substitution .
-
* Lösa enklare integrationsproblem som kräver omskrivning och/eller substitution i ett steg.
+
* Solve easier integration problems that require rewriting and / or substitution in one of the steps.
-
* Veta hur integrationsgränserna ändras under variabelsubstitution.
+
* Know how the limits of integration are to be changed after a variable substitution.
-
* Veta när en variabelsubstitution är tillåten.
+
* Know when variable substitution is allowed.
}}
}}
-
== Variabelsubstitution ==
+
== Variable substitution ==
-
När man inte direkt kan bestämma en primitiv funktion genom att utnyttja de vanliga deriveringsreglerna ”baklänges”, behöver man andra metoder eller tekniker. En sådan är ''variabelsubstitution'', vilken kan sägas baseras på regeln för derivering av sammansatta funktioner — den s.k. ''kedjeregeln''.
+
When you cannot directly determine a primitive function by using the usual rules of differentiation ”in the opposite direction”, method, other methods or techniques are needed . One such is ''variable substitution'', which can be said to be based on the rule for the differentiation of composite functions — the so-called ''chain rule''.
-
Kedjeregeln <math>\ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \cdot u'(x)\ </math> kan i integralform skrivas
+
The chain rule <math>\ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \cdot u'(x)\ </math> can be written in integral form as
{{Fristående formel||<math>\int f^{\,\prime}(u(x)) \cdot u'(x) \, dx = f(u(x)) + C</math>}}
{{Fristående formel||<math>\int f^{\,\prime}(u(x)) \cdot u'(x) \, dx = f(u(x)) + C</math>}}
-
eller,
+
or,
<div class="regel">
<div class="regel">
Zeile 37: Zeile 37:
</div>
</div>
-
där ''F'' är en primitiv funktion till ''f''. Jämför vi denna formel med
+
where ''F'' is a primitive function of ''f''. We compare this with the formula
{{Fristående formel||<math>\int f(u) \, du = F(u) + C\,\mbox{,}</math>}}
{{Fristående formel||<math>\int f(u) \, du = F(u) + C\,\mbox{,}</math>}}
-
så kan vi se det som att vi ersätter uttrycket <math>u(x)</math> med variabeln <math>u</math> och <math>u'(x)\, dx</math> med <math>du</math>. Man kan alltså omvandla den krångligare integranden <math>f(u(x)) \cdot u'(x)</math> (med <math>x</math> som variabel) med den förhoppningsvis enklare <math>f(u)</math> (med <math>u</math> som variabel). Metoden kallas variabelsubstitution och kan användas när integranden kan skrivas på formen <math>f(u(x)) \cdot u'(x)</math>.
+
We can see that we have replaced the term <math>u(x)</math> with variable <math>u</math> and the <math>u'(x)\, dx</math> with <math>du</math>. One thus can transform the more complicated integrand <math>f(u(x)) \cdot u'(x)</math> (with <math>x</math> as the variable) to the, let us hope, easier <math>f(u)</math> (with the <math>u</math> as the variable). The method is called variable substitution and can be used when the integrand can be written in the form <math>f(u(x)) \cdot u'(x)</math>.
-
''Anm. 1'' Metoden bygger naturligtvis på att alla förutsättningar för integrering är uppfyllda; att <math>u(x)</math> är deriverbar i det aktuella intervallet, samt att <math>f</math> är kontinuerlig i värdemängden till <math>u</math>, dvs. för alla värden som <math>u</math> kan anta i intervallet.
+
''Note 1'' The method is based on the assumption that all the conditions for integration are satisfied; that is <math>u(x)</math> is differentiable in the interval in question, and that <math>f</math> is continuous for all values of <math>u</math> in the range, that is for all the values that <math>u</math> can take on in the interval.
-
''Anm. 2'' Att ersätta <math>u'(x) \, dx</math> med <math>du</math> kan också motiveras genom att studera övergången från differenskvot till derivata:
+
'' Note 2'' Replacing <math>u'(x) \, dx</math> with <math>du</math> also may be justified by studying the transition from the increment ratio to the derivative:
{{Fristående formel||<math>\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx} = u'(x)\,\mbox{,}</math>}}
{{Fristående formel||<math>\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx} = u'(x)\,\mbox{,}</math>}}
-
vilket när <math>\Delta x</math> går mot noll kan betraktas som en formell gränsövergång
+
which, as <math>\Delta x</math> goes towards zero can be considered as a formal transition between variables
{{Fristående formel||<math>\Delta u \approx u'(x) \Delta x \quad \to \quad du = u'(x) \, dx\,\mbox{,}</math>}}
{{Fristående formel||<math>\Delta u \approx u'(x) \Delta x \quad \to \quad du = u'(x) \, dx\,\mbox{,}</math>}}
-
dvs., en liten ändring, <math>dx</math>, i variabeln <math>x</math> ger upphov till en ungefärlig ändring <math>u'(x)\,dx</math> i variabeln <math>u</math>.
+
ie., a small change, <math>dx</math>, in the variable <math>x</math> gives rise to an approximate change <math>u'(x)\,dx</math> in the variable <math>u</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
-
Bestäm integralen <math>\ \int 2 x\, e^{x^2} \, dx</math>.
+
Determine the integral<math>\ \int 2 x\, e^{x^2} \, dx</math>.
<br>
<br>
<br>
<br>
-
Om man sätter <math>u(x)= x^2</math>, så blir <math>u'(x)= 2x</math>. Vid variabelbytet ersätts då <math>e^{x^2}</math> med <math>e^u</math> och <math>u'(x)\,dx</math>, dvs. <math>2x\,dx</math>, med <math>du</math>
+
If one puts <math>u(x)= x^2</math>, one gets <math>u'(x)= 2x</math>. The variable substitution replaces <math>e^{x^2}</math> with <math>e^u</math> and <math>u'(x)\,dx</math>, i.e. <math>2x\,dx</math>, with <math>du</math>
{{Fristående formel||<math> \int 2 x\,e^{x^2} \, dx = \int e^{x^2} \cdot 2x \, dx = \int e^u \, du = e^u + C = e^{x^2} + C\,\mbox{.}</math>}}
{{Fristående formel||<math> \int 2 x\,e^{x^2} \, dx = \int e^{x^2} \cdot 2x \, dx = \int e^u \, du = e^u + C = e^{x^2} + C\,\mbox{.}</math>}}
Zeile 70: Zeile 70:
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
-
Bestäm integralen <math>\ \int (x^3 + 1)^3 \cdot x^2 \, dx</math>.
+
Determine the integral <math>\ \int (x^3 + 1)^3 \cdot x^2 \, dx</math>.
<br>
<br>
<br>
<br>
-
Sätt <math>u=x^3 + 1</math>. Då blir <math>u'=3x^2</math>, eller <math>du= 3x^2\, dx</math>, och
+
Put <math>u=x^3 + 1</math>. This means <math>u'=3x^2</math>, or <math>du= 3x^2\, dx</math>, and
{{Fristående formel||<math>\begin{align*}\int (x^3 + 1)^3 x^2 \, dx &= \int \frac{ (x^3 + 1)^3}{3} \cdot 3x^2\, dx = \int \frac{u^3}{3}\, du\\[4pt] &= \frac{u^4}{12} + C = \frac{1}{12} (x^3 + 1)^4 + C\,\mbox{.}\end{align*}</math>}}
{{Fristående formel||<math>\begin{align*}\int (x^3 + 1)^3 x^2 \, dx &= \int \frac{ (x^3 + 1)^3}{3} \cdot 3x^2\, dx = \int \frac{u^3}{3}\, du\\[4pt] &= \frac{u^4}{12} + C = \frac{1}{12} (x^3 + 1)^4 + C\,\mbox{.}\end{align*}</math>}}
Zeile 82: Zeile 82:
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
-
Bestäm integralen <math>\ \int \tan x \, dx\,\mbox{,}\ \ </math> där <math>-\pi/2 < x < \pi/2</math>.
+
Determine the integral <math>\ \int \tan x \, dx\,\mbox{,}\ \ </math> where <math>-\pi/2 < x < \pi/2</math>.
<br>
<br>
<br>
<br>
-
Efter en omskrivning av <math>\tan x</math> som <math>\sin x/\cos x</math> substituerar vi <math>u=\cos x</math>,
+
After rewriting <math>\tan x</math> as <math>\sin x/\cos x</math> we substitute <math>u=\cos x</math>,
{{Fristående formel||<math>\begin{align*}\int \tan x \, dx &= \int \frac{\sin x}{\cos x} \, dx = \left[\,\begin{align*} u &= \cos x\\ u' &= - \sin x\\ du &= - \sin x \, dx \end{align*}\,\right]\\[4pt] &= \int -\frac{1}{u}\, du = - \ln |u| +C = -\ln |\cos x| + C\,\mbox{.}\end{align*}</math>}}
{{Fristående formel||<math>\begin{align*}\int \tan x \, dx &= \int \frac{\sin x}{\cos x} \, dx = \left[\,\begin{align*} u &= \cos x\\ u' &= - \sin x\\ du &= - \sin x \, dx \end{align*}\,\right]\\[4pt] &= \int -\frac{1}{u}\, du = - \ln |u| +C = -\ln |\cos x| + C\,\mbox{.}\end{align*}</math>}}
Zeile 94: Zeile 94:
-
== Integrationsgränser vid variabelbyte ==
+
== The limits of integration during variable substitution. ==
-
 
+
-
Vid beräkning av bestämda integraler, t.ex. en area, där man använder variabelsubstitution kan man gå till väga på två sätt. Antingen beräknar man integralen som vanligt, byter tillbaka till den ursprungliga variabeln och sätter in de ursprungliga integrationsgränserna. Alternativt ändrar man integrationsgränser samtidigt som man gör variabelbytet. De båda metoderna illustreras i följande exempel.
+
 +
When calculating definite integrals, such as an area, one can go about using variable substitution in two ways. Either one can calculate the integral as usual and then switch back to the original variable and insert the original limits of integration. Alternatively one can change the limits of integration simultaneously with the variable substitution. The two methods are illustrated in the following example.
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
-
Beräkna integralen <math>\ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx</math>.
+
Determine the integral <math>\ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx</math>.
-
''Metod 1''
+
'' Method 1''
-
Sätt <math>u=e^x</math> vilket ger att <math>u'= e^x</math> och <math>du= e^x\,dx</math>
+
Put <math>u=e^x</math> which gives that <math>u'= e^x</math> and <math>du= e^x\,dx</math>
{{Fristående formel||<math>\begin{align*}\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx &= \int_{x=0}^{\,x=2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{x=0}^{x=2} = \Bigl[\,\ln (1+ e^x)\,\Bigr]_{0}^{2}\\[4pt] &= \ln (1+ e^2) - \ln 2 = \ln \frac{1+ e^2}{2}\,\mbox {.}\end{align*}</math>}}
{{Fristående formel||<math>\begin{align*}\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx &= \int_{x=0}^{\,x=2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{x=0}^{x=2} = \Bigl[\,\ln (1+ e^x)\,\Bigr]_{0}^{2}\\[4pt] &= \ln (1+ e^2) - \ln 2 = \ln \frac{1+ e^2}{2}\,\mbox {.}\end{align*}</math>}}
-
Observera att integrationsgränserna måste skrivas <math>x = 0</math> och <math>x = 2</math> när integrationsvariabeln inte är <math>x</math>. Det vore fel att skriva
+
Note that the limits of integration must be written in the form <math>x = 0</math> and <math>x = 2</math> when the variable of integration is not <math>x</math>. it is wrong to write
{{Fristående formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{0}^{2} \frac{1}{1 + u} \, du \quad \text{ osv.}</math>}}
{{Fristående formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{0}^{2} \frac{1}{1 + u} \, du \quad \text{ osv.}</math>}}
-
''Metod 2''
+
'' Method 2''
-
Sätt <math>u=e^x</math> vilket ger att <math>u'= e^x</math> och <math>du= e^x\, dx</math>. Integrationsgränsen <math>x=0</math> motsvaras då av <math>u=e^0 = 1</math> och <math>x=2</math> motsvaras av <math>u=e^2</math>
+
Put <math>u=e^x</math> which gives that <math>u'= e^x</math> and <math>du= e^x\, dx</math>. The limit of integration <math>x=0</math> is equivalent to <math>u=e^0 = 1</math> and <math>x=2</math> is equivalent to <math>u=e^2</math>
{{Fristående formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{1}^{\,e^2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{1}^{e^2} = \ln (1+ e^2) - \ln 2 = \ln\frac{1+ e^2}{2}\,\mbox{.}</math>}}
{{Fristående formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{1}^{\,e^2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{1}^{e^2} = \ln (1+ e^2) - \ln 2 = \ln\frac{1+ e^2}{2}\,\mbox{.}</math>}}
Zeile 125: Zeile 124:
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
-
Beräkna integralen <math> \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx</math>.
+
Determine the integral <math> \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx</math>.
<br>
<br>
<br>
<br>
-
Substitutionen <math>u=\sin x</math> ger att <math>du=\cos x\,dx</math> och integrationsgränserna förändras till <math>u=\sin 0=0</math> och <math>u=\sin(\pi/2)=1</math>. Integralen blir
+
The substitution <math>u=\sin x</math> gives <math>du=\cos x\,dx</math> and the limits of integration become <math>u=\sin 0=0</math> and <math>u=\sin(\pi/2)=1</math>. The integral is
{{Fristående formel||<math>\int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx = \int_{0}^{1} u^3\,du = \Bigl[\,\tfrac{1}{4}u^4\,\Bigr]_{0}^{1} = \tfrac{1}{4} - 0 = \tfrac{1}{4}\,\mbox{.}</math>}}
{{Fristående formel||<math>\int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx = \int_{0}^{1} u^3\,du = \Bigl[\,\tfrac{1}{4}u^4\,\Bigr]_{0}^{1} = \tfrac{1}{4} - 0 = \tfrac{1}{4}\,\mbox{.}</math>}}
Zeile 137: Zeile 136:
<center>{{:2.2 - Figur - Area under y = sin³x cos x resp. y = u³}}</center>
<center>{{:2.2 - Figur - Area under y = sin³x cos x resp. y = u³}}</center>
{| width="80%" align="center"
{| width="80%" align="center"
-
||<small>Figuren till vänster visar grafen till integranden sin³''x'' cos ''x'' och figuren till höger grafen till integranden ''u''³ som fås efter variabelsubstitutionen. Vid variabelbytet ändras integranden och integrationsintervallet. Integralens värde, storleken på arean, ändras dock inte.</small>
+
||<small> The figure on the left shows the graph of the integrand sin³''x'' cos ''x'' and the figure on the right the graph of integrand ''u''³ which is obtained after the variable substitution. The change of variable modifies the integrand and the interval of the integration. The integrals value, the size of the area, is not changed however. </small>
|}
|}
Zeile 143: Zeile 142:
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
-
Betrakta beräkningen
+
Examine the following calculation
{{Fristående formel||<math>\int_{-\pi/2}^{\pi/2} \frac{\cos x}{\sin^2 x}\, dx = \left[\,\begin{align*} &u = \sin x\\ &du = \cos x \, dx\\ &u(-\pi/2) = -1\\ &u (\pi/2) = 1\end{align*}\,\right ] = \int_{-1}^{1} \frac{1}{u^2} \, du = \Bigl[\, -\frac{1}{u}\, \Bigr]_{-1}^{1} = -1 - 1 = -2\,\mbox{.}</math>}}
{{Fristående formel||<math>\int_{-\pi/2}^{\pi/2} \frac{\cos x}{\sin^2 x}\, dx = \left[\,\begin{align*} &u = \sin x\\ &du = \cos x \, dx\\ &u(-\pi/2) = -1\\ &u (\pi/2) = 1\end{align*}\,\right ] = \int_{-1}^{1} \frac{1}{u^2} \, du = \Bigl[\, -\frac{1}{u}\, \Bigr]_{-1}^{1} = -1 - 1 = -2\,\mbox{.}</math>}}
Zeile 151: Zeile 150:
{| width="100%"
{| width="100%"
| width="95%" |
| width="95%" |
-
Denna uträkning är dock felaktig, vilket beror på att <math>f(u)=1/u^2</math> inte är kontinuerlig i '''hela''' intervallet <math>[-1,1]</math>.
+
This calculation, however, is wrong, which is due to the fact that <math>f(u)=1/u^2</math> is not continuous '''throughout''' the interval <math>[-1,1]</math>.
-
Villkoret att <math>f(u(x))</math> ska vara definierad och kontinuerlig för alla värden som <math>u(x)</math> kan anta i det aktuella intervallet behövs om man vill vara säker på att substitutionen <math>u=u(x)</math> ska fungera.
+
A necessary condition in the theory is that <math>f(u(x))</math> be defined and continuous for all values which <math>u(x)</math> can take in the interval in question. Otherwise one cannot be certain that the substitution <math>u=u(x)</math> will work.
| width="5%" |
| width="5%" |
||
||

Version vom 09:36, 22. Jul. 2008

 
  1. REDIRECT Template:Gewählter Tab
  2. REDIRECT Template:Nicht gewählter Tab
 

Content:

  • Integration by substitution

Learning outcomes:

After this section, you will have learned to:

  • Understand the derivation of the formula for variable substitution .
  • Solve easier integration problems that require rewriting and / or substitution in one of the steps.
  • Know how the limits of integration are to be changed after a variable substitution.
  • Know when variable substitution is allowed.

Variable substitution

When you cannot directly determine a primitive function by using the usual rules of differentiation ”in the opposite direction”, method, other methods or techniques are needed . One such is variable substitution, which can be said to be based on the rule for the differentiation of composite functions — the so-called chain rule.

The chain rule \displaystyle \ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \cdot u'(x)\ can be written in integral form as

  1. REDIRECT Template:Abgesetzte Formel

or,

where F is a primitive function of f. We compare this with the formula

  1. REDIRECT Template:Abgesetzte Formel

We can see that we have replaced the term \displaystyle u(x) with variable \displaystyle u and the \displaystyle u'(x)\, dx with \displaystyle du. One thus can transform the more complicated integrand \displaystyle f(u(x)) \cdot u'(x) (with \displaystyle x as the variable) to the, let us hope, easier \displaystyle f(u) (with the \displaystyle u as the variable). The method is called variable substitution and can be used when the integrand can be written in the form \displaystyle f(u(x)) \cdot u'(x).


Note 1 The method is based on the assumption that all the conditions for integration are satisfied; that is \displaystyle u(x) is differentiable in the interval in question, and that \displaystyle f is continuous for all values of \displaystyle u in the range, that is for all the values that \displaystyle u can take on in the interval.


Note 2 Replacing \displaystyle u'(x) \, dx with \displaystyle du also may be justified by studying the transition from the increment ratio to the derivative:

  1. REDIRECT Template:Abgesetzte Formel

which, as \displaystyle \Delta x goes towards zero can be considered as a formal transition between variables

  1. REDIRECT Template:Abgesetzte Formel

ie., a small change, \displaystyle dx, in the variable \displaystyle x gives rise to an approximate change \displaystyle u'(x)\,dx in the variable \displaystyle u.


Example 1

Determine the integral\displaystyle \ \int 2 x\, e^{x^2} \, dx.

If one puts \displaystyle u(x)= x^2, one gets \displaystyle u'(x)= 2x. The variable substitution replaces \displaystyle e^{x^2} with \displaystyle e^u and \displaystyle u'(x)\,dx, i.e. \displaystyle 2x\,dx, with \displaystyle du

  1. REDIRECT Template:Abgesetzte Formel

Example 2

Determine the integral \displaystyle \ \int (x^3 + 1)^3 \cdot x^2 \, dx.

Put \displaystyle u=x^3 + 1. This means \displaystyle u'=3x^2, or \displaystyle du= 3x^2\, dx, and

  1. REDIRECT Template:Abgesetzte Formel

Example 3

Determine the integral \displaystyle \ \int \tan x \, dx\,\mbox{,}\ \ where \displaystyle -\pi/2 < x < \pi/2.

After rewriting \displaystyle \tan x as \displaystyle \sin x/\cos x we substitute \displaystyle u=\cos x,

  1. REDIRECT Template:Abgesetzte Formel


The limits of integration during variable substitution.

When calculating definite integrals, such as an area, one can go about using variable substitution in two ways. Either one can calculate the integral as usual and then switch back to the original variable and insert the original limits of integration. Alternatively one can change the limits of integration simultaneously with the variable substitution. The two methods are illustrated in the following example.

Example 4

Determine the integral \displaystyle \ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx.


Method 1

Put \displaystyle u=e^x which gives that \displaystyle u'= e^x and \displaystyle du= e^x\,dx

  1. REDIRECT Template:Abgesetzte Formel

Note that the limits of integration must be written in the form \displaystyle x = 0 and \displaystyle x = 2 when the variable of integration is not \displaystyle x. it is wrong to write

  1. REDIRECT Template:Abgesetzte Formel


Method 2

Put \displaystyle u=e^x which gives that \displaystyle u'= e^x and \displaystyle du= e^x\, dx. The limit of integration \displaystyle x=0 is equivalent to \displaystyle u=e^0 = 1 and \displaystyle x=2 is equivalent to \displaystyle u=e^2

  1. REDIRECT Template:Abgesetzte Formel

Example 5

Determine the integral \displaystyle \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx.

The substitution \displaystyle u=\sin x gives \displaystyle du=\cos x\,dx and the limits of integration become \displaystyle u=\sin 0=0 and \displaystyle u=\sin(\pi/2)=1. The integral is

  1. REDIRECT Template:Abgesetzte Formel


2.2 - Figur - Area under y = sin³x cos x resp. y = u³
The figure on the left shows the graph of the integrand sin³x cos x and the figure on the right the graph of integrand u³ which is obtained after the variable substitution. The change of variable modifies the integrand and the interval of the integration. The integrals value, the size of the area, is not changed however.

Example 6

Examine the following calculation

  1. REDIRECT Template:Abgesetzte Formel

This calculation, however, is wrong, which is due to the fact that \displaystyle f(u)=1/u^2 is not continuous throughout the interval \displaystyle [-1,1].

A necessary condition in the theory is that \displaystyle f(u(x)) be defined and continuous for all values which \displaystyle u(x) can take in the interval in question. Otherwise one cannot be certain that the substitution \displaystyle u=u(x) will work.

2.2 - Figur - Grafen till f(u) = 1/u²
Grafen till f(u) = 1/u²