ZusatzStoffTUB
Aus Online Mathematik Brückenkurs 2
Zeile 55: | Zeile 55: | ||
==Folgerungen== | ==Folgerungen== | ||
- | Fuer <math>\vec{w} | + | Fuer <math>\vec{v}, \vec{w} \ne 0</math> ist |
+ | <math> <\vec{v}, \vec{w}>=0 \Leftrightarrow \cos{\angle \vec{v}, \vec{w}}=0</math><math>\Leftrightarrow \vec{v} \perp \vec{w}</math> | ||
+ | "<math> \vec{v}</math> orthogonal zu <math> \vec{w}</math>" | ||
+ | |||
+ | Fuer <math>\vec{v}= \vec{w}</math> ist | ||
+ | <math><\vec{v},\vec{v}>=||\vec{v}|| \cdot ||\vec{v}|| \cdot \cos{0}=||\vec{v}||^2</math> | ||
+ | also | ||
+ | <math>||\vec{v}||= \sqrt{v_1^2+v_2^2+v_3^2}</math> | ||
+ | (vgl. <math>||\vec{v}||= \sqrt{v_1^2+v_2^2}</math> in <math> R^2</math>, Pytagoras 3D) | ||
+ | |||
+ | Skalarprodukt: | ||
+ | - bei gleicher Groesse Laenge | ||
+ | - Winkelgroessen | ||
+ | - Wissen wann Winkel senkrecht | ||
+ | |||
+ | '''Beispiel''' | ||
+ | <math>\cos{\angle(\vec{v},\vec{w})}=\dfrac{<\vec{v},\vec{w}>}{||\vec{v}|| ||\vec{w}||}</math> | ||
+ | <math>\vec{a}=\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} ,\vec{b}=\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}</math> | ||
+ | <math>\cos{\angle(\vec{a},\vec{b})}= \dfrac{2\cdot 3 + (-3)\cdot 1+ 1\cdot 4}{\sqrt{4+9+1} \sqrt{9+1+16}}= \dfrac{7}{\sqrt{14} \sqrt{26}} \approx 0,3669</math> | ||
+ | <math>\Rightarrow</math> Winkel zwischen a,b : <math>\angle(a,b) \approx 68,48^{\circ}</math> | ||
+ | |||
+ | == Das Kreuzprodukt ("Vektorprodukt")== | ||
+ | |||
+ | Im <math> R^3</math> definiere | ||
+ | <math>\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}= \begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}</math>. | ||
+ | |||
+ | '''Eigenschaften von <math>\vec{u}=\vec{v} \times \vec{w}''' | ||
+ | <ol> | ||
+ | <li> | ||
+ | <math>\vec{u} \perp \vec{v} , \vec{u} \perp \vec{w}</math> |
Version vom 11:22, 2. Okt. 2009
Zusätzlicher Stoff im Präsenzbrückenkurs der TU Berlin
Inhalt:
- erster Punkt
- zweiter Punkt
- dritter Punkt
Lernziele
Nach diesem Abschnitt sollten Sie folgendes können:
- erstes Ziel
- zweites Ziel
Inhaltsverzeichnis |
3.1. Geometrie im Raum
A - Vektoren des \displaystyle R^3
BESCHREIBUNG
C - (Standart-)Skalarprodukt im \displaystyle R^3 ("Punktprodukt")
Fuer \displaystyle \vec{v}= \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} und \displaystyle \vec{w}= \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}:
\displaystyle <\vec{v},\vec{w}>:= v_1w_1+ v_2w_2+v_3w_3=\vec{v} \cdot \vec{w}
\displaystyle <\vec{v},\vec{w}> \in R
(analog im \displaystyle R^2
\displaystyle <\vec{v},\vec{w}>= <\begin{pmatrix} v_1 \\ v_2 \end{pmatrix},\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}>= v_1w_1+ v_2w_2)
Achtung: Das Skalarprodukt nicht mit der Skalaren Multiplikation verwechseln. Bei dem Skalarprodukt werden zwei Vektoren multipliziert, wobie man ein Skalar (eine reelle Zahl) erhaelt, waehrend man bei der skalaren Multiplikation einen Vekotor mit einem Skalar multipliziert und einen Vektor erhaehlt.
Wichtige Eigenschaften des Skalarprodukts
Verknuefung von Winkel und Laenge ueber
\displaystyle <\vec{v},\vec{w}>=||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos{\angle(\vec{v},\vec{w})}
Begruendung: Betrachte die Vektoren \displaystyle \vec{v},\vec{w}
BILD
\displaystyle \vec{w}= \begin{pmatrix} ||\vec{w} || \\ 0 \end{pmatrix} \displaystyle \vec{v}= \begin{pmatrix} a \\ b \end{pmatrix} \displaystyle ||\vec{v}||= \sqrt{a^2+b^2} \displaystyle \cos{\gamma}= \dfrac{Ankathete}{Hypothenuse}=\dfrac{a}{||\vec{v}||}=\dfrac{a}{\sqrt{a^2+b^2}} \Leftrightarrow a=||\vec{v}|| \cdot \cos{\gamma} <bar>Dann ist \displaystyle <\vec{v},\vec{w}>=<\begin{pmatrix} ||\vec{w} || \\ 0 \end{pmatrix},\begin{pmatrix} a \\ b \end{pmatrix}>=<\begin{pmatrix} ||\vec{w} || \\ 0 \end{pmatrix},\begin{pmatrix} ||\vec{v}|| \cdot \cos{\gamma} \\ b \end{pmatrix}>= ||\vec{w} || \cdot ||\vec{v}|| \cdot \cos{\gamma}+ 0 \cdot b=||\vec{w} || \cdot ||\vec{v}|| \cdot \cos{\gamma}
Die Begruendung ist fuer alle Vektoren gueltig, da man die Vektoren so drehen kann, dass \displaystyle \vec{w} parallel zur x-Achse ist und \displaystyle \vec{v} in der x-y-Ebene. Dabei bleibt das Skalarprodukt und die Winkel unveraendert. In der Linearen Algebra fuer Ingenieure wird dieses auch nochmal genauer erklaert.
Folgerungen
Fuer \displaystyle \vec{v}, \vec{w} \ne 0 ist \displaystyle <\vec{v}, \vec{w}>=0 \Leftrightarrow \cos{\angle \vec{v}, \vec{w}}=0\displaystyle \Leftrightarrow \vec{v} \perp \vec{w} "\displaystyle \vec{v} orthogonal zu \displaystyle \vec{w}"
Fuer \displaystyle \vec{v}= \vec{w} ist \displaystyle <\vec{v},\vec{v}>=||\vec{v}|| \cdot ||\vec{v}|| \cdot \cos{0}=||\vec{v}||^2 also \displaystyle ||\vec{v}||= \sqrt{v_1^2+v_2^2+v_3^2} (vgl. \displaystyle ||\vec{v}||= \sqrt{v_1^2+v_2^2} in \displaystyle R^2, Pytagoras 3D)
Skalarprodukt: - bei gleicher Groesse Laenge - Winkelgroessen - Wissen wann Winkel senkrecht
Beispiel \displaystyle \cos{\angle(\vec{v},\vec{w})}=\dfrac{<\vec{v},\vec{w}>}{||\vec{v}|| ||\vec{w}||} \displaystyle \vec{a}=\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} ,\vec{b}=\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \displaystyle \cos{\angle(\vec{a},\vec{b})}= \dfrac{2\cdot 3 + (-3)\cdot 1+ 1\cdot 4}{\sqrt{4+9+1} \sqrt{9+1+16}}= \dfrac{7}{\sqrt{14} \sqrt{26}} \approx 0,3669 \displaystyle \Rightarrow Winkel zwischen a,b : \displaystyle \angle(a,b) \approx 68,48^{\circ}
Das Kreuzprodukt ("Vektorprodukt")
Im \displaystyle R^3 definiere \displaystyle \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}= \begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}.
Eigenschaften von \displaystyle \vec{u}=\vec{v} \times \vec{w}'''