Lösung 1.3:6
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-ä +ä)) |
|||
Zeile 43: | Zeile 43: | ||
{{Abgesetzte Formel||<math>A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\,</math>}} | {{Abgesetzte Formel||<math>A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\,</math>}} | ||
- | an der | + | an der stationären Stelle. |
Also ist <math> r=\sqrt[3]{V/\pi} </math> lokale Minimalstelle. | Also ist <math> r=\sqrt[3]{V/\pi} </math> lokale Minimalstelle. |
Aktuelle Version
Wir benennen den Radius der Tasse r und die Höhe h. Das Volumen ist
\displaystyle \begin{align}
\text{Volume} &= \text{(Fläche der Basis)}\cdot\text{(Höhe)}\\[5pt] &= \pi r^2\cdot h\,,\\[10pt] \text{Fläche} &= \text{(Fläche der Basis)} + \text{(Fläche des Zylinders)}\\[5pt] &= \pi r^2 + 2\pi rh\,\textrm{.} \end{align} |
Das Problem ist also: Minimiere die Fläche \displaystyle A = \pi r^2 + 2\pi h, während das Volumen \displaystyle V = \pi r^2h\, konstant ist.
Wir schreiben h als Funktion des Volumens
\displaystyle h=\frac{V}{\pi r^2} |
und können dadurch die Fläche als Funktion von r schreiben.
\displaystyle A = \pi r^2 + 2\pi r\cdot\frac{V}{\pi r^2} = \pi r^2 + \frac{2V}{r}\,\textrm{} |
Unsere Aufgabe lautet dann: Minimiere die Fläche \displaystyle A(r) = \pi r^2 + \frac{2V}{r}, wenn \displaystyle r>0\,.
Die Funktion \displaystyle A(r) ist für alle \displaystyle r>0 differenzierbar und der Bereich \displaystyle r>0 hat keine Endpunkte (da \displaystyle r=0 nicht \displaystyle r>0 erfüllt), also erscheinen Extremstellen nur in stationären Stellen.
Die Ableitung ist
\displaystyle A'(r) = 2\pi r - \frac{2V}{r^2}\,. |
Die Nullstellen der Ableitung ergeben sich aus folgender Gleichung
\displaystyle \begin{align}
& 2\pi r - \frac{2V}{r^2} = 0\quad \Leftrightarrow \quad 2\pi r = \frac{2V}{r^2}\\[5pt] &\quad\Leftrightarrow \quad r^3=\frac{V}{\pi}\quad \Leftrightarrow \quad r=\sqrt[\scriptstyle 3]{\frac{V}{\pi}}\,\textrm{.} \end{align} |
Die zweite Ableitung ist
\displaystyle A''(r) = 2\pi + \frac{4V}{r^3}\, |
und hat den Wert
\displaystyle A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\, |
an der stationären Stelle.
Also ist \displaystyle r=\sqrt[3]{V/\pi} lokale Minimalstelle.
Da wir kein begrenztes Intervall haben, können wir nicht direkt ausschließen, dass die Fläche kleiner wird, wenn \displaystyle r\to 0 oder wenn \displaystyle r\to \infty . Hier wächst die Fläche aber unbegrenzt in beiden Fällen \displaystyle r\to 0 und \displaystyle r\to \infty , also ist \displaystyle r=\sqrt[3]{V/\pi} eine globale Minimalstelle.
Also ist die Fläche minimal, wenn
\displaystyle \begin{align}
r &= \sqrt[3]{V/\pi}\,,\quad\text{und}\\[5pt] h &= \frac{V}{\pi r^{2}} = \frac{V}{\pi}\Bigl(\frac{V}{\pi}\Bigr)^{-2/3} = \Bigl( \frac{V}{\pi}\Bigr)^{1-2/3} = \Bigl(\frac{V}{\pi}\Bigr)^{1/3} = \sqrt[3]{\frac{V}{\pi}}\,\textrm{.} \end{align} |