2.2 Integration durch Substitution

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Added skype and exercise links at the bottom of the page)
(A - Integration durch Substitution)
Zeile 37: Zeile 37:
</div>
</div>
-
wobei ''F'' eine Stammfunktion von ''f'' ist. Wir vergleichen diese Formel mit der normalen Intagrationsformel
+
wobei ''F'' eine Stammfunktion von ''f'' ist, d.h. es gilt <math> F^{\, \prime} =f </math>.
 +
 
 +
Wir zeigen eine eigenenst&auml;ndige Herleitung dieser Integrationsformel:
 +
Wir vergleichen diese Formel mit der normalen Intagrationsformel
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C\,\mbox{.}</math>}}
-
und sehen, dass wir die Variable <math>u(x)</math> mit der Variable <math>u</math> ersetzt haben und den Term <math>u'(x)\, dx</math> mit <math>du</math>. Daher kann man den komplizierteren Integranden <math>f(u(x)) \, u'(x)</math> ersetzen (mit <math>x</math> als Variable) mit dem einfacheren Ausdruck <math>f(u)</math> (mit <math>u</math> als Variable). Dies wird Substitution genannt, und kann angewendet werden, wenn der Integrand auf der Form <math>f(u(x)) \, u'(x)</math> ist.
+
und sehen, dass wir die Variable <math>u(x)</math> mit der Variable <math>u</math> ersetzt haben und den Term <math>u'(x)\, dx</math> mit <math>du</math>.
 +
 
 +
Alternativer Text: Wir beginnen mit der normalen Intagrationsformel. Der Integrand <math> f </math> hat die Stammfunktion <math> F </math> und <math> u </math> ist die Integrationsvariable
 +
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C\,\mbox{.}</math>}}
 +
 
 +
Wir ersetzen jetzt die Integrationsvariable <math> u </math> durch die Funktion <math> u(x) </math>. Dadurch ver&auml;ndert sich <math> f(u) </math> zu <math> f(u(x)) </math> und <math> du </math> zu <math> d u(x) </math>. Wir wissen aber eigentlich nicht, was <math> du(x) </math> ist. In der n&auml;chsten Zeile tun wir so, als w&auml;re <math> \frac{dx}{dx} =1 </math> wie bei "normalen" Br&uuml;chen.
 +
{{Abgesetzte Formel||<math>du(x) = \frac{dx}{dx} d u(x) = \frac{1}{dx} d u(x) d x = \frac{d}{dx} u(x) \, dx = u^{\, \prime} (x) \, dx </math>}}
 +
 
 +
Also ist das unbekannt <math> du(x) </math> dasselbe wie das bekannte <math> u^{\, \prime}(x)\, dx </math>: Beim Integrieren mit der Integrationsvariable <math> x </math> wird der Integrand mit <math> u^{\, \prime}(x) </math> multipliziert. Also haben wir
 +
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C \textrm{ mit } u(x) \textrm{ statt } u \textrm{ ergibt } \int f(u(x)) \, u^{\, \prime}(x) \, dx = F(u(x)) + C\,\mbox{.}</math>}}
 +
 
 +
Daher kann man den komplizierteren Integranden <math>f(u(x)) \, u'(x)</math> ersetzen (mit <math>x</math> als Variable) mit dem einfacheren Ausdruck <math>f(u)</math> (mit <math>u</math> als Variable). Dies wird Substitution genannt, und kann angewendet werden, wenn der Integrand auf der Form <math>f(u(x)) \, u'(x)</math> ist.
Hinweis: Die Voraussetzung, um die Integration durch Substitution zu verwenden ist, dass <math>u(x)</math> im Intervall differenzierbar ist, für alle <math>u</math> im Intervall.
Hinweis: Die Voraussetzung, um die Integration durch Substitution zu verwenden ist, dass <math>u(x)</math> im Intervall differenzierbar ist, für alle <math>u</math> im Intervall.
Zeile 81: Zeile 95:
</div>
</div>
- 
== B - Die Integrationsgrenzen bei Substitution ==
== B - Die Integrationsgrenzen bei Substitution ==

Version vom 11:12, 10. Sep. 2009

       Theorie          Übungen      

Inhalt:

  • Integration durch Substitution

Lernziele:

Nach diesem Abschnitt solltest Du folgendes wissen:

  • Wie die Formel für die Integration durch Substitution hergeleitet wird.
  • Wie man Integrale mit Integration durch Substitution löst.
  • Wie man die Integrationsgrenzen bei der Substitution richtig ändert.
  • Wann Integration durch Substitution möglich ist.

A - Integration durch Substitution

Wenn man eine Funktion nicht direkt integrieren kann, kann man die Funktion manchmal durch eine Substitution integrieren. Die Formel für die Integration durch Substitution ist einfach die Kettenregel für Ableitungen rückwärts.

Die Kettenregel \displaystyle \ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \, u'(x)\ kann in Integralform geschrieben werden:

\displaystyle \int f^{\,\prime}(u(x)) \, u'(x) \, dx = f(u(x)) + C

oder

\displaystyle \int f(u(x)) \, u'(x) \, dx = F (u(x)) + C\,\mbox{,}

wobei F eine Stammfunktion von f ist, d.h. es gilt \displaystyle F^{\, \prime} =f .

Wir zeigen eine eigenenständige Herleitung dieser Integrationsformel: Wir vergleichen diese Formel mit der normalen Intagrationsformel

\displaystyle \int f(u) \, du = F(u) + C\,\mbox{.}

und sehen, dass wir die Variable \displaystyle u(x) mit der Variable \displaystyle u ersetzt haben und den Term \displaystyle u'(x)\, dx mit \displaystyle du.

Alternativer Text: Wir beginnen mit der normalen Intagrationsformel. Der Integrand \displaystyle f hat die Stammfunktion \displaystyle F und \displaystyle u ist die Integrationsvariable

\displaystyle \int f(u) \, du = F(u) + C\,\mbox{.}

Wir ersetzen jetzt die Integrationsvariable \displaystyle u durch die Funktion \displaystyle u(x) . Dadurch verändert sich \displaystyle f(u) zu \displaystyle f(u(x)) und \displaystyle du zu \displaystyle d u(x) . Wir wissen aber eigentlich nicht, was \displaystyle du(x) ist. In der nächsten Zeile tun wir so, als wäre \displaystyle \frac{dx}{dx} =1 wie bei "normalen" Brüchen.

\displaystyle du(x) = \frac{dx}{dx} d u(x) = \frac{1}{dx} d u(x) d x = \frac{d}{dx} u(x) \, dx = u^{\, \prime} (x) \, dx

Also ist das unbekannt \displaystyle du(x) dasselbe wie das bekannte \displaystyle u^{\, \prime}(x)\, dx : Beim Integrieren mit der Integrationsvariable \displaystyle x wird der Integrand mit \displaystyle u^{\, \prime}(x) multipliziert. Also haben wir

\displaystyle \int f(u) \, du = F(u) + C \textrm{ mit } u(x) \textrm{ statt } u \textrm{ ergibt } \int f(u(x)) \, u^{\, \prime}(x) \, dx = F(u(x)) + C\,\mbox{.}

Daher kann man den komplizierteren Integranden \displaystyle f(u(x)) \, u'(x) ersetzen (mit \displaystyle x als Variable) mit dem einfacheren Ausdruck \displaystyle f(u) (mit \displaystyle u als Variable). Dies wird Substitution genannt, und kann angewendet werden, wenn der Integrand auf der Form \displaystyle f(u(x)) \, u'(x) ist.

Hinweis: Die Voraussetzung, um die Integration durch Substitution zu verwenden ist, dass \displaystyle u(x) im Intervall differenzierbar ist, für alle \displaystyle u im Intervall.


Beispiel 1

Berechne das Integral \displaystyle \ \int 2 x\, e^{x^2} \, dx.

Wenn wir die Substitution \displaystyle u(x)= x^2 machen, erhalten wir \displaystyle u'(x)= 2x. Durch die Substitution wird \displaystyle e^{x^2}, \displaystyle e^u und \displaystyle u'(x)\,dx, also \displaystyle 2x\,dx wird \displaystyle du

\displaystyle \int 2 x\,e^{x^2} \, dx = \int e^{x^2} \cdot 2x \, dx = \int e^u \, du = e^u + C = e^{x^2} + C\,\mbox{.}

Beispiel 2

Bestimme das Integral \displaystyle \ \int (x^3 + 1)^3 \, x^2 \, dx.

Wir substituieren, \displaystyle u=x^3 + 1.Dies ergibt \displaystyle u'=3x^2, oder \displaystyle du= 3x^2\, dx, und daher ist

\displaystyle \begin{align*}\int (x^3 + 1)^3 x^2 \, dx &= \int \frac{ (x^3 + 1)^3}{3} \cdot 3x^2\, dx = \int \frac{u^3}{3}\, du\\[4pt] &= \frac{u^4}{12} + C = \frac{1}{12} (x^3 + 1)^4 + C\,\mbox{.}\end{align*}

Beispiel 3

Bestimme das Integral \displaystyle \ \int \tan x \, dx\,\mbox{,}\ \ wo \displaystyle -\pi/2 < x < \pi/2.

Wir schreiben \displaystyle \tan x wie \displaystyle \sin x/\cos x und machen die Substitution \displaystyle u=\cos x,

\displaystyle \begin{align*}\int \tan x \, dx &= \int \frac{\sin x}{\cos x} \, dx = \left[\,\begin{align*} u &= \cos x\\ u' &= - \sin x\\ du &= - \sin x \, dx \end{align*}\,\right]\\[4pt] &= \int -\frac{1}{u}\, du = - \ln |u| +C = -\ln |\cos x| + C\,\mbox{.}\end{align*}

B - Die Integrationsgrenzen bei Substitution

Wenn man bestimmte Integrale berechnet, gibt es zwei Methoden, mit den Integrationsgrenzen umzugehen. Entweder berechnet man das Integral und ersetzt danach die neue Variable mit der alten oder man ändert die Integrationsgrenzen während der Integration. Das folgende Beispiel zeigt die beiden Methoden.

Beispiel 4 Berechne das Integral \displaystyle \ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx.


Methode 1

Wir substituieren \displaystyle u=e^x , und dies ergibt \displaystyle u'= e^x und \displaystyle du= e^x\,dx

\displaystyle \begin{align*}\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx &= \int_{x=0}^{\,x=2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{x=0}^{x=2} = \Bigl[\,\ln (1+ e^x)\,\Bigr]_{0}^{2}\\[4pt] &= \ln (1+ e^2) - \ln 2 = \ln \frac{1+ e^2}{2}\,\mbox {.}\end{align*}

Wir müssen die Integrationsgrenzen hier wie \displaystyle x = 0 und \displaystyle x = 2 schreiben, nachdem \displaystyle x nicht die Integrationsvariable ist. Folgende Schreibweise ist falsch:

\displaystyle \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{0}^{2} \frac{1}{1 + u} \, du \quad \text{ etc.}


Methode 2

Wir substituieren \displaystyle u=e^x und dies ergibt \displaystyle u'= e^x und \displaystyle du= e^x\, dx. Die Integrationsgrenze \displaystyle x=0 entspricht \displaystyle u=e^0 = 1 und \displaystyle x=2 entspricht \displaystyle u=e^2

\displaystyle \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{1}^{\,e^2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{1}^{e^2} = \ln (1+ e^2) - \ln 2 = \ln\frac{1+ e^2}{2}\,\mbox{.}

Beispiel 5

Bestimme das Integral \displaystyle \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx.

Durch die Substitution \displaystyle u=\sin x erhalten wir \displaystyle du=\cos x\,dx und die Integrationsgrenzen sind daher \displaystyle u=\sin 0=0 und \displaystyle u=\sin(\pi/2)=1. Das Integral ist daher

\displaystyle \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx = \int_{0}^{1} u^3\,du = \Bigl[\,\tfrac{1}{4}u^4\,\Bigr]_{0}^{1} = \tfrac{1}{4} - 0 = \tfrac{1}{4}\,\mbox{.}


[Image]

Das linke Bild zeigt die Funktion sin³x cos x und die rechte Figur zeigt die Funktion u³ die wir nach der Substitution erhalten. Durch die Substitution erhalten wir ein neues Intervall. Der Wert des Integrals ändert sich aber nicht.

Beispiel 6

Betrachte folgende Rechnungen:

\displaystyle \int_{-\pi/2}^{\pi/2} \frac{\cos x}{\sin^2 x}\, dx = \left[\,\begin{align*} &u = \sin x\\ &du = \cos x \, dx\\ &u(-\pi/2) = -1\\ &u (\pi/2) = 1\end{align*}\,\right ] = \int_{-1}^{1} \frac{1}{u^2} \, du = \Bigl[\, -\frac{1}{u}\, \Bigr]_{-1}^{1} = -1 - 1 = -2\,\mbox{.}

Diese Rechnung ist aber falsch, nachdem \displaystyle f(u)=1/u^2 nicht im ganzen Intervall \displaystyle [-1,1] definiert ist (nicht wenn \displaystyle x=0).

Es ist notwendig, dass die Funktion \displaystyle f(u(x)) überall im Intervall definiert und kontinuierlich ist. Ansonsten wird die Substitution \displaystyle u=u(x) nicht gültig sein.

[Image]

Graph von f(u) = 1/u²



Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor My status My status

Keine Fragen mehr? Dann mache weiter mit den Übungen .