Lösung 2.1:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Solution 2.1:2c moved to Lösung 2.1:2c: Robot: moved page)
Zeile 1: Zeile 1:
-
If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as
+
Wir erinnern uns daran dass <math>\sqrt{x} = x^{1/2}</math>, und erhalten
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 7: Zeile 7:
\end{align}</math>}}
\end{align}</math>}}
-
This is a standard integral in which the integrand consists of two terms looking like <math>x^n</math>, where <math>n=1/2</math> and <math>n=-1/2\,</math>, respectively.
+
Dies ist ein Standardintegral mit nur <math>x^n</math>-Terme, wo <math>n=1/2</math> und <math>n=-1/2\,</math>, in den beiden Termen ist.
-
We obtain
+
Wir erhalten das Integral
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}

Version vom 16:48, 28. Apr. 2009

Wir erinnern uns daran dass \displaystyle \sqrt{x} = x^{1/2}, und erhalten

\displaystyle \begin{align}

\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx &= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt] &= \int\limits_{4}^{9}\bigl(x^{1/2} - x^{-1/2}\bigr)\,dx\,\textrm{.} \end{align}

Dies ist ein Standardintegral mit nur \displaystyle x^n-Terme, wo \displaystyle n=1/2 und \displaystyle n=-1/2\,, in den beiden Termen ist.

Wir erhalten das Integral

\displaystyle \begin{align}

\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx &= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt] &= \Bigl[\ \frac{x^{1+1/2}}{3/2} - \frac{x^{1/2}}{1/2}\ \Bigr]_{4}^{9}\\[5pt] &= \Bigl[\ \frac{2}{3}x\sqrt{x} - 2\sqrt{x}\ \Bigr]_{4}^{9}\\[5pt] &= \frac{2}{3}\cdot 9\cdot\sqrt{9} - 2\sqrt{9} - \Bigl(\frac{2}{3}\cdot 4\cdot \sqrt{4}-2\sqrt{4} \Bigr)\\[5pt] &= \frac{2}{3}\cdot 9\cdot 3 - 2\cdot 3 - \Bigl( \frac{2}{3}\cdot 4\cdot 2 - 2\cdot 2 \Bigr)\\[5pt] &= 18-6-\frac{16}{3}+4\\[5pt] &= 16-\frac{16}{3}\\[5pt] &= \frac{16\cdot 3-16}{3}\\[5pt] &= \frac{32}{3}\,\textrm{.} \end{align}