Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | K  (Solution 2.3:2c moved to Lösung 2.3:2c: Robot: moved page) | 
Version vom 10:27, 11. Mär. 2009
If we use the definition of \displaystyle \tan x and write the integral as
| \displaystyle \int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx | 
we see that the numerator \displaystyle \sin x is the derivative of the denominator (apart from the minus sign). Hence, the substitution \displaystyle u=\cos x will work,
| \displaystyle \begin{align} \int\frac{\sin x}{\cos x}\,dx &= \left\{\begin{align} u &= \cos x\\[5pt] du &= (\cos x)'\,dx = -\sin x\,dx \end{align}\right\}\\[5pt] &= -\int\frac{du}{u}\\[5pt] &= -\ln |u| + C\\[5pt] &= -\ln |\cos x| + C\,\textrm{.} \end{align} | 
Note: \displaystyle -\ln \left| \cos x \right|+C is only a primitive function in intervals in which \displaystyle \cos x\ne 0.
 
		  