Lösung 2.2:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | K  (Solution 2.2:3c moved to Lösung 2.2:3c: Robot: moved page) | 
Version vom 10:23, 11. Mär. 2009
It is simpler to investigate the integral if we write it as
| \displaystyle \int \ln x\cdot\frac{1}{x}\,dx\,, | 
The derivative of \displaystyle \ln x is \displaystyle 1/x, so if we choose \displaystyle u = \ln x, the integral can be expressed as
| \displaystyle \int u\cdot u'\,dx\,\textrm{.} | 
Thus, it seems that \displaystyle u=\ln x is a useful substitution,
| \displaystyle \begin{align} \int \ln x\cdot\frac{1}{x}\,dx &= \left\{\begin{align} u &= \ln x\\[5pt] du &= (\ln x)'\,dx = (1/x)\,dx \end{align}\right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}(\ln x)^2 + C\,\textrm{.} \end{align} | 
 
		  