Lösung 2.1:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (Solution 2.1:3b moved to Lösung 2.1:3b: Robot: moved page) |
Version vom 10:16, 11. Mär. 2009
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
| \displaystyle \int 2\sin x\cos x\,dx = \int \sin 2x\,dx |
we obtain a standard integral where we can write down the primitive functions directly,
| \displaystyle \int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,, |
where \displaystyle C is an arbitrary constant.
