Lösung 2.1:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | K  (Solution 2.1:2d moved to Lösung 2.1:2d: Robot: moved page) | 
Version vom 10:16, 11. Mär. 2009
If we rewrite \displaystyle \sqrt{x} as \displaystyle x^{1/2}, the integrand can then be simplified using the power laws,
| \displaystyle \int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.} | 
We can now use the fact that a primitive function for \displaystyle x^{n} is \displaystyle x^{n+1}/(n+1) and calculate the integral's value,
| \displaystyle \begin{align} \int\limits_1^4 x^{-3/2}\,dx &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt] &= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt] &= -\frac{2}{2}+2\\[5pt] &= 1\,\textrm{.} \end{align} | 
 
		  