2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Exercises +Übungen))
K (Robot: Automated text replacement (-Exercise +Übung))
Zeile 7: Zeile 7:
|}
|}
-
===Exercise 2.1:1===
+
===Übung 2.1:1===
<div class="ovning">
<div class="ovning">
Interpret each integral as an area, and determine its value.
Interpret each integral as an area, and determine its value.
Zeile 24: Zeile 24:
</div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Solution 2.1:1a|Solution b|Solution 2.1:1b|Solution c|Solution 2.1:1c|Solution d|Solution 2.1:1d}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Solution 2.1:1a|Solution b|Solution 2.1:1b|Solution c|Solution 2.1:1c|Solution d|Solution 2.1:1d}}
-
===Exercise 2.1:2===
+
===Übung 2.1:2===
<div class="ovning">
<div class="ovning">
Calculate the integrals
Calculate the integrals
Zeile 40: Zeile 40:
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d}}
-
===Exercise 2.1:3===
+
===Übung 2.1:3===
<div class="ovning">
<div class="ovning">
Calculate the integrals
Calculate the integrals
Zeile 56: Zeile 56:
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d}}
-
===Exercise 2.1:4===
+
===Übung 2.1:4===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
Zeile 76: Zeile 76:
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c|Solution d|Solution 2.1:4d|Solution e|Solution 2.1:4e}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c|Solution d|Solution 2.1:4d|Solution e|Solution 2.1:4e}}
-
===Exercise 2.1:5===
+
===Übung 2.1:5===
<div class="ovning">
<div class="ovning">
Calculate the integral
Calculate the integral

Version vom 13:23, 10. Mär. 2009

       Theory          Übungen      

Übung 2.1:1

Interpret each integral as an area, and determine its value.

a) \displaystyle \displaystyle\int_{-1}^{2} 2\, dx b) \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx
c) \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx d) \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx

Übung 2.1:2

Calculate the integrals

a) \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx b) \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx
c) \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx d) \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx

Übung 2.1:3

Calculate the integrals

a) \displaystyle \displaystyle\int \sin x\, dx b) \displaystyle \displaystyle\int 2\sin x \cos x\, dx
c) \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx

Übung 2.1:4

a) Calculate the area between the curve \displaystyle y=\sin x and the \displaystyle x-axis when \displaystyle 0\le x \le \frac{5\pi}{4}.
b) Calculate the area under the curve \displaystyle y=-x^2+2x+2 and above the \displaystyle x-axis.
c) Calculate the area of the finite region between the curves \displaystyle y=\frac{1}{4}x^2+2 and \displaystyle y=8-\frac{1}{8}x^2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves \displaystyle y=x+2, y=1 and \displaystyle y=\frac{1}{x}.
e) Calculate the area of the region given by the inequality, \displaystyle x^2\le y\le x+2.

Übung 2.1:5

Calculate the integral

a) \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (Hint: multiply the top and bottom by the conjugate of the denominator)
b) \displaystyle \displaystyle \int \sin^2 x\ dx\quad (Hint: rewrite the integrand using a trigonometric formula)