1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Exercises +Übungen)) |
K (Robot: Automated text replacement (-Exercise +Übung)) |
||
Zeile 7: | Zeile 7: | ||
|} | |} | ||
- | === | + | ===Übung 1.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" | {| width="100%" | ||
Zeile 28: | Zeile 28: | ||
</div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}} | </div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}} | ||
- | === | + | ===Übung 1.1:2=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the derivative <math>f^{\,\prime}(x)</math> when | Determine the derivative <math>f^{\,\prime}(x)</math> when | ||
Zeile 48: | Zeile 48: | ||
</div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}} | </div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}} | ||
- | === | + | ===Übung 1.1:3=== |
<div class="ovning"> | <div class="ovning"> | ||
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | ||
Zeile 54: | Zeile 54: | ||
</div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Solution 1.1:3}} | </div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Solution 1.1:3}} | ||
- | === | + | ===Übung 1.1:4=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | ||
Zeile 60: | Zeile 60: | ||
</div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Solution 1.1:4}} | </div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Solution 1.1:4}} | ||
- | === | + | ===Übung 1.1:5=== |
<div exercise ="ovning"> | <div exercise ="ovning"> | ||
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | ||
</div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Solution 1.1:5}} | </div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Solution 1.1:5}} |
Version vom 13:23, 10. Mär. 2009
Theory | Übungen |
Übung 1.1:1
The graph for \displaystyle f(x) is shown in the figure.
(Each square in the grid of the figure has width and height 1.) | 1.1 - Figure - The graph of f(x) in exercise 1.1:1 |
Answer
Solution a
Solution b
Solution c
Übung 1.1:2
Determine the derivative \displaystyle f^{\,\prime}(x) when
a) | \displaystyle f(x) = x^2 -3x +1 | b) | \displaystyle f(x)=\cos x -\sin x | c) | \displaystyle f(x)= e^x-\ln x |
d) | \displaystyle f(x)=\sqrt{x} | e) | \displaystyle f(x) = (x^2-1)^2 | f) | \displaystyle f(x)= \cos (x+\pi/3) |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Übung 1.1:3
A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?
Answer
Solution
Übung 1.1:4
Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).
Answer
Solution
Übung 1.1:5
Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).
Answer
Solution